TensorFlow HOWTO 1.2 LASSO、嶺和 Elastic Net

1.2 LASSO、嶺和 Elastic Net

當參數變多的時候,就要考慮使用正則化進行限制,防止過擬合。

操作步驟

導入所需的包。

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import sklearn.datasets as ds
import sklearn.model_selection as ms

導入數據,并進行預處理。我們使用波士頓數據集所有數據的全部特征。

boston = ds.load_boston()

x_ = boston.data
y_ = np.expand_dims(boston.target, 1)

x_train, x_test, y_train, y_test = \
    ms.train_test_split(x_, y_, train_size=0.7, test_size=0.3)
    
mu_train = x_train.mean(0)
sigma_train = x_train.std(0)
x_train = (x_train - mu_train) / sigma_train
x_test = (x_test - mu_train) / sigma_train

定義超參數。

n_input = 13
n_epoch = 2000
lr = 0.05
lam = 0.1
l1_ratio = 0.5
變量 含義
n_input 樣本特征數
n_epoch 迭代數
lr 學習率
lam 正則化系數
l1_ratio L1 正則化比例。如果它是 1,模型為 LASSO 回歸;如果它是 0,模型為嶺回歸;如果在 01 之間,模型為 Elastic Net。

搭建模型。

變量 含義
x 輸入
y 真實標簽
w 權重
b 偏置
z 輸出,也就是標簽預測值
x = tf.placeholder(tf.float64, [None, n_input])
y = tf.placeholder(tf.float64, [None, 1])
w = tf.Variable(np.random.rand(n_input, 1))
b = tf.Variable(np.random.rand(1, 1))
z = x @ w + b

定義損失、優化操作、和 R 方度量指標。

我們在 MSE 基礎上加上兩個正則項:

\begin{matrix} L_1 = \lambda_1 \|w\|_1 \\ L_2 = \lambda_2 \|w\|^2 \\ L = L_{MSE} + L_1 + L_2 \end{matrix}

變量 含義
mse_loss MSE 損失
l1_loss L1 損失
l2_loss L2 損失
loss 總損失
op 優化操作
y_mean y的均值
r_sqr R 方值
mse_loss = tf.reduce_mean((z - y) ** 2)
l1_loss = lam * l1_ratio * tf.reduce_sum(tf.abs(w))
l2_loss = lam * (1 - l1_ratio) * tf.reduce_sum(w ** 2)
loss = mse_loss + l1_loss + l2_loss
op = tf.train.AdamOptimizer(lr).minimize(loss)

y_mean = tf.reduce_mean(y)
r_sqr = 1 - tf.reduce_sum((y - z) ** 2) / tf.reduce_sum((y - y_mean) ** 2)

使用訓練集訓練模型。

losses = []
r_sqrs = []

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for e in range(n_epoch):
        _, loss_ = sess.run([op, loss], feed_dict={x: x_train, y: y_train})
        losses.append(loss_)

使用測試集計算 R 方。

        r_sqr_ = sess.run(r_sqr, feed_dict={x: x_test, y: y_test})
        r_sqrs.append(r_sqr_)

每一百步打印損失和度量值。

        if e % 100 == 0:
            print(f'epoch: {e}, loss: {loss_}, r_sqr: {r_sqr_}')

輸出:

epoch: 0, loss: 601.4143942455931, r_sqr: -5.632461200109857
epoch: 100, loss: 337.83817233312953, r_sqr: -2.8921127959091235
epoch: 200, loss: 205.95485710264686, r_sqr: -1.3905038082279204
epoch: 300, loss: 122.56157140781264, r_sqr: -0.4299323503419834
epoch: 400, loss: 73.34245865955972, r_sqr: 0.13473129501015224
epoch: 500, loss: 46.62652385307641, r_sqr: 0.4391669119513518
epoch: 600, loss: 33.418871666746185, r_sqr: 0.5880392599137905
epoch: 700, loss: 27.51559958401544, r_sqr: 0.6533498987634062
epoch: 800, loss: 25.14275351335227, r_sqr: 0.6787325098436232
epoch: 900, loss: 24.28818622078879, r_sqr: 0.6872955402664112
epoch: 1000, loss: 24.01321943982539, r_sqr: 0.689688496343003
epoch: 1100, loss: 23.93439017638524, r_sqr: 0.6901611522536858
epoch: 1200, loss: 23.914316369424643, r_sqr: 0.690163604062231
epoch: 1300, loss: 23.909792588385457, r_sqr: 0.6901031472929803
epoch: 1400, loss: 23.908894366923214, r_sqr: 0.6900616479035429
epoch: 1500, loss: 23.90873804289015, r_sqr: 0.6900411329923608
epoch: 1600, loss: 23.90871433783755, r_sqr: 0.6900324529674866
epoch: 1700, loss: 23.908711226897406, r_sqr: 0.690029151344134
epoch: 1800, loss: 23.908710876248833, r_sqr: 0.6900280037335323
epoch: 1900, loss: 23.908710842591514, r_sqr: 0.6900276378081478

繪制訓練集上的損失。

plt.figure()
plt.plot(losses)
plt.title('Loss on Training Set')
plt.xlabel('#epoch')
plt.ylabel('MSE')
plt.show()

https://github.com/wizardforcel/how2tf/raw/master/img/1-2-1.png

繪制測試集上的 R 方。

plt.figure()
plt.plot(r_sqrs)
plt.title('$R^2$ on Testing Set')
plt.xlabel('#epoch')
plt.ylabel('$R^2$')
plt.show()

https://github.com/wizardforcel/how2tf/raw/master/img/1-2-2.png

擴展閱讀

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,825評論 6 546
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,814評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 178,980評論 0 384
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 64,064評論 1 319
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,779評論 6 414
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 56,109評論 1 330
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 44,099評論 3 450
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,287評論 0 291
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,799評論 1 338
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,515評論 3 361
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,750評論 1 375
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,221評論 5 365
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,933評論 3 351
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,327評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,667評論 1 296
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,492評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,703評論 2 380

推薦閱讀更多精彩內容