原文地址:https://mp.weixin.qq.com/s/3K7vQVOHZkUvYGI8XYUwiA
? ? ? ? ? ? ? ? ? ? 今天推薦給大家一個R包WGCNA,針對我們的表達譜數據進行分析。
簡單介紹:WGCNA首先假定基因網絡服從無尺度分布,并定義基因共表達相關矩陣、基因網絡形成的鄰接函數,然后計算不同節點的相異系數,并據此構建系統聚類樹。該聚類樹的不同分支代表不同的基因模塊(module),模塊內基因共表達程度高,而分屬不同模塊的基因共表達程度低。
主要應用:如果某些基因在一個生理過程或不同組織中總是具有相類似的表達變化,那么我們有理由認為這些基因在功能上是相關的,可以把它們定義為一個模塊(module)。當基因module被定義出來后,我們可以利用這些結果做很多進一步的工作,如篩選module的核心基因,關聯性狀,代謝通路建模,建立基因互作網絡等。
好了,言歸正傳,我們開始一步步進行演示!
載入WGCNA包,設置隨機種子,默認數據不進行因子轉換
先把原始數據轉列,轉成橫排是探針(基因),縱排是個體的順序,先變成數列,用as.data.fame,然后改列名rownames(design) <- design[,1]
design <- design[,-1]
##datExpr<-as.data.frame(datExpr)? (有可能需要先把數值轉為數據集)
##> datExpr1<-read.table("test.txt",header=T,stringsAsFactors = F)
##> datExpr1<-t(datExpr1)
##> colnames(datExpr1)<-datExpr1[1,]
##> datExpr1<-datExpr1[-1,]
##> datExpr1<-as.data.frame(datExpr1)
library(WGCNA)
set.seed(1)
options(stringsAsFactors = F)
構造性狀數據(亦或是分組數據)
obs<-paste("sam",1:10,sep="")
sample<-as.data.frame(diag(x=1,nrow = length(obs)))
rownames(sample)<-obs
colnames(sample)<-1:10
構造表達量數據
datExpr<-as.data.frame(t(matrix(runif(30000)+5,3000,10)))
rownames(datExpr)<-obs
names(datExpr)<-paste("transcript",1:3000,sep="")
明確樣本數和基因數
nGenes = ncol(datExpr)
nSamples = nrow(datExpr)
首先針對樣本做個系統聚類樹
datExpr_tree<-hclust(dist(datExpr), method = "average")
par(mar = c(0,5,2,0))
plot(datExpr_tree, main = "Sample clustering", sub="", xlab="", cex.lab = 2,
cex.axis = 1, cex.main = 1,cex.lab=1)
針對前面構造的樣品矩陣添加對應顏色
sample_colors <- numbers2colors(sample, colors = c("white","blue"),signed = FALSE)
構造10個樣品的系統聚類樹及性狀熱圖
par(mar = c(1,4,3,1),cex=0.8)
plotDendroAndColors(datExpr_tree, sample_colors,
groupLabels = colnames(sample),
cex.dendroLabels = 0.8,
marAll = c(1, 4, 3, 1),
cex.rowText = 0.01,
main = "Sample dendrogram and trait heatmap")
這個有什么意義呢?
你可以將樣本分為正常組和對照組,或者野生型和突變型等,從而可以查看樣本聚類情況!
針對10個樣品繪制主成分圖(在這里不考慮分組情況)
pca = prcomp(datExpr)
sampletype<-rownames(sample)
par(mar = c(4,4,4,6))
plot(pca$x[,c(1,2)],pch=16,col=rep(rainbow(nSamples),each=1),cex=1.5,main = "PCA map")
text(pca$x[,c(1,2)],row.names(pca$x),col="black",pos=3,cex=1)
legend("right",legend=sampletype,ncol = 1,xpd=T,inset = -0.15,
pch=16,cex=1,col=rainbow(length(sampletype)),bty="n")
library(scatterplot3d)
par(mar = c(4,4,4,4))
scatterplot3d(pca$x[,1:3], highlight.3d=F, col.axis="black",color = rep(rainbow(nSamples),each=1),cex.symbols=1.5,cex.lab=1,cex.axis=1, col.grid="lightblue", main="PCA map", pch=16)
legend("topleft",legend = row.names(pca$x) ,pch=16,cex=1,col=rainbow(nSamples), ncol = 2,bty="n")
選擇合適“軟閥值(soft thresholding power)”beta
powers = c(1:30)
pow<-pickSoftThreshold(datExpr, powerVector = powers, verbose = 5)
設置網絡構建參數選擇范圍,計算無尺度分布拓撲矩陣
par(mfrow = c(1,2))
plot(pow$fitIndices[,1], -sign(pow$fitIndices[,3])*pow$fitIndices[,2],xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit,signed R^2",type="n", main = paste("Scale independence"))
text(pow$fitIndices[,1], -sign(pow$fitIndices[,3])*pow$fitIndices[,2],labels=powers,cex=0.5,col="red")
plot(pow$fitIndices[,1], pow$fitIndices[,5],xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",main = paste("Mean connectivity"))
text(pow$fitIndices[,1], pow$fitIndices[,5], labels=powers, cex=0.6,col="red")
參數beta取值默認是1:30,上述圖形的橫軸均代表權重參數β,左圖縱軸代表對應的網絡中log(k)與log(p(k))相關系數的平方。相關系數的平方越高,說明該網絡越逼近無網路尺度的分布。右圖的縱軸代表對應的基因模塊中所有基因鄰接函數的均值。
在這里,我們選擇β=6構建基因網絡。
接下來是非常重要的一塊內容就是構架基因網絡
大體思路:計算基因間的鄰接性,根據鄰接性計算基因間的相似性,然后推出基因間的相異性系數,并據此得到基因間的系統聚類樹。然后按照混合動態剪切樹的標準,設置每個基因模塊最少的基因數目為30。根據動態剪切法確定基因模塊后,再次分析,依次計算每個模塊的特征向量值,然后對模塊進行聚類分析,將距離較近的模塊合并為新的模塊。
1、計算樹之間的鄰接性
adjacency = adjacency(datExpr, power = softPower)?
2、計算樹之間的相異性
TOM = TOMsimilarity(adjacency)
dissTOM = 1-TOM
3、聚類分析
geneTree = hclust(as.dist(dissTOM), method = "average")
4、設置基因模塊中最少基因包含30個
minModuleSize = 30
dynamicMods
= cutreeDynamic(dendro = geneTree, distM = dissTOM, deepSplit =
2,pamRespectsDendro = FALSE, minClusterSize = minModuleSize)
5、基因分組上色
dynamicColors = labels2colors(dynamicMods)
table(dynamicColors)
6、計算基因模塊的特征值
MEList = moduleEigengenes(datExpr, colors = dynamicColors)
MEs = MEList$eigengenes
MEDiss = 1-cor(MEs)
METree = hclust(as.dist(MEDiss), method = "average")
7、建立系統聚類樹
MEDissThres = 0.4
plot(METree, main = "Clustering of module eigengenes", xlab = "", sub = "")
abline(h=MEDissThres, col = "red")
7、基因模塊合并
merge = mergeCloseModules(datExpr, dynamicColors, cutHeight = MEDissThres, verbose = 3)
mergedColors = merge$colors
mergedMEs = merge$newMEs
8、繪制基因網絡圖
plotDendroAndColors(geneTree,
cbind(dynamicColors, mergedColors), c("Dynamic Tree Cut", "Merged
dynamic"), dendroLabels = FALSE, hang = 0.03, addGuide = TRUE, guideHang
= 0.05)
拓展分析
不同模塊基因熱圖及關鍵基因的表達
person=cor(datExpr,use = 'p')
corr<-TOM
Colors<-mergedColors
colnames(corr)<-colnames(datExpr)
rownames(corr)<-colnames(datExpr)
names(Colors)<-colnames(datExpr)
colnames(person)<-colnames(datExpr)
rownames(person)<-colnames(datExpr)
umc = unique(mergedColors)
lumc = length(umc)
for (i in c(1:lumc)){
if(umc[i]== "grey"){
next
}
ME=MEs[, paste("ME",umc[i], sep="")]
par(mfrow=c(2,1), mar=c(0.3, 5.5, 3, 2))
plotMat(t(scale(datExpr[,Colors==umc[i]])),nrgcols=30,rlabels=F,rcols=umc[i], main=umc[i], cex.main=2)
par(mar=c(5, 4.2, 0, 0.7))
barplot(ME, col=umc[i], main="", cex.main=2,ylab="eigengene expression",xlab="array sample")
}
一共會生成36個基因模塊熱圖,由于篇幅有限,僅僅展示2個
基因共表達網絡熱圖
kME=signedKME(datExpr, mergedMEs, outputColumnName = "kME", corFnc = "cor", corOptions = "use = 'p'")
if (dim(datExpr)[2]>=1500) nSelect=1500 else nSelect=dim(datExpr)[2]
set.seed(1)
select = sample(nGenes, size = nSelect)
selectTOM = dissTOM[select, select]
selectTree = hclust(as.dist(selectTOM), method = "average")
selectColors = moduleColors[select]
plotDiss = selectTOM^7
TOMplot(plotDiss, selectTree, selectColors, main = "Network heatmap plot")
模塊相關性熱圖
MEs = moduleEigengenes(datExpr, Colors)$eigengenes
MET = orderMEs(MEs)
plotEigengeneNetworks(MET, "Eigengene adjacency heatmap", marHeatmap = c(3,4,2,2), plotDendrograms = FALSE, xLabelsAngle = 90)
模塊與性狀相關性熱圖
moduleTraitCor = cor(MET, sample, use = "p")
moduleTraitPvalue = corPvalueStudent(moduleTraitCor, nSamples)
textMatrix = paste(signif(moduleTraitCor, 2), "\n(",signif(moduleTraitPvalue, 1), ")", sep = "")
dim(textMatrix) = dim(moduleTraitCor)
par(mar = c(2, 4, 2, 1.5))
labeledHeatmap(Matrix = moduleTraitCor,
xLabelsAngle = 0,
cex.lab = 0.5,
xLabels = colnames(sample),
yLabels = names(MET),
ySymbols = names(MET),
colorLabels = FALSE,
colors = blueWhiteRed(100),
textMatrix = textMatrix,
setStdMargins = FALSE,
cex.text = 0.5,
zlim = c(-1,1),
yColorWidth=0.02,
xColorWidth = 0.05,
main = paste("Module-trait relationships"))
基因的系統樹圖及性狀相關性熱圖
geneTraitSignificance = as.data.frame(cor(datExpr, sample, use = "p"))
geneTraitColor=as.data.frame(numbers2colors(geneTraitSignificance,signed=TRUE,colors = colorRampPalette(c("blue","white","red"))(100)))
names(geneTraitColor)= colnames(sample)
par(mar = c(3.5, 7, 2, 1))
plotDendroAndColors(geneTree, cbind(mergedColors, geneTraitColor),
c("Module",colnames(sample)),dendroLabels = FALSE, hang = 0.03,
addGuide = TRUE, guideHang = 0.05)
不同模塊的基因顯著性圖
geneTraitSignificance = as.data.frame(cor(datExpr, sample, use = "p"))
GSPvalue = as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples))
names(geneTraitSignificance) = paste("GS.", colnames(sample), sep="")
names(GSPvalue) = paste("GS.", colnames(sample), sep="")
modNames = substring(names(MET), 3)
for (module in modNames){
if(module== "grey"){ next }
column = match(module, modNames); # col number of interesting modules
moduleGenes = Colors==module;
par(mfrow = c(1,1))
verboseScatterplot(abs(kME[moduleGenes, column]),
abs(geneTraitSignificance[moduleGenes, 1]),
xlab = paste("Module Membership in", module, "module"),
ylab = "Gene significance",
main = paste("Module membership vs. gene significance
"),cex.main = 1.2, cex.lab = 1.2, pch=19,cex.axis = 1.2, col = module)}
好了,今天就到這里……
相關函數? plotMEpairs() (這個也很重要)
一步法:
TOM = TOMsimilarityFromExpr(data_matrix_mv, power = 6);
# Read in the annotation file
# annot = read.csv(file = "GeneAnnotation.csv");
# Select modules需要修改,選擇需要導出的模塊顏色
modules = c("turquoise");
# Select module probes選擇模塊探測
probes = colnames(data_matrix_mv)
inModule = is.finite(match(mergedColors, modules));
modProbes = probes[inModule];
#modGenes = annot$gene_symbol[match(modProbes, annot$substanceBXH)];
# Select the corresponding Topological Overlap
modTOM = TOM[inModule, inModule];
dimnames(modTOM) = list(modProbes, modProbes)
# Export the network into edge and node list files Cytoscape can read
cyt = exportNetworkToCytoscape(modTOM,
???????????????????????????????edgeFile = paste("AS-green-FPKM-One-step-CytoscapeInput-edges-", paste(modules, collapse="-"), ".txt", sep=""),
???????????????????????????????nodeFile = paste("AS-green-FPKM-One-step-CytoscapeInput-nodes-", paste(modules, collapse="-"), ".txt", sep=""),
???????????????????????????????weighted = TRUE,
???????????????????????????????threshold = 0.02,
???????????????????????????????nodeNames = modProbes,
???????????????????????????????#altNodeNames = modGenes,
???????????????????????????????nodeAttr = mergedColors[inModule]);
作者:蘇慕晨楓
鏈接:http://www.lxweimin.com/p/72c5b4e9ac3e
來源:簡書
簡書著作權歸作者所有,任何形式的轉載都請聯系作者獲得授權并注明出處。