[Repost] Testing Your Code

Source

Testing your code is very important.

Getting used to writing testing code and running this code in parallel is now considered a good habit. Used wisely, this method helps you define more precisely your code’s intent and have a more decoupled architecture.

Some general rules of testing:

  • A testing unit should focus on one tiny bit of functionality and prove it correct.
  • Each test unit must be fully independent. Each test must be able to run alone, and also within the test suite, regardless of the order that they are called. The implication of this rule is that each test must be loaded with a fresh dataset and may have to do some cleanup afterwards. This is usually handled by setUp() and tearDown() methods.
  • Try hard to make tests that run fast. If one single test needs more than a few milliseconds to run, development will be slowed down or the tests will not be run as often as is desirable. In some cases, tests can’t be fast because they need a complex data structure to work on, and this data structure must be loaded every time the test runs. Keep these heavier tests in a separate test suite that is run by some scheduled task, and run all other tests as often as needed.
  • Learn your tools and learn how to run a single test or a test case. Then, when developing a function inside a module, run this function’s tests frequently, ideally automatically when you save the code.
  • Always run the full test suite before a coding session, and run it again after. This will give you more confidence that you did not break anything in the rest of the code.
  • It is a good idea to implement a hook that runs all tests before pushing code to a shared repository.
  • If you are in the middle of a development session and have to interrupt your work, it is a good idea to write a broken unit test about what you want to develop next. When coming back to work, you will have a pointer to where you were and get back on track faster.
  • The first step when you are debugging your code is to write a new test pinpointing the bug. While it is not always possible to do, those bug catching tests are among the most valuable pieces of code in your project.
  • Use long and descriptive names for testing functions. The style guide here is slightly different than that of running code, where short names are often preferred. The reason is testing functions are never called explicitly. square() or even sqr() is ok in running code, but in testing code you would have names such as test_square_of_number_2(), test_square_negative_number(). These function names are displayed when a test fails, and should be as descriptive as possible.
  • When something goes wrong or has to be changed, and if your code has a good set of tests, you or other maintainers will rely largely on the testing suite to fix the problem or modify a given behavior. Therefore the testing code will be read as much as or even more than the running code. A unit test whose purpose is unclear is not very helpful in this case.
  • Another use of the testing code is as an introduction to new developers. When someone will have to work on the code base, running and reading the related testing code is often the best thing that they can do to start. They will or should discover the hot spots, where most difficulties arise, and the corner cases. If they have to add some functionality, the first step should be to add a test to ensure that the new functionality is not already a working path that has not been plugged into the interface.

The Basics

*Unittest is the batteries-included test module in the Python standard library. Its API will be familiar to anyone who has used any of the JUnit/nUnit/CppUnit series of tools. Creating test cases is accomplished by subclassing unittest.TestCase.

import unittest

def fun(x):
    return x + 1

class MyTest(unittest.TestCase):
    def test(self):
        self.assertEqual(fun(3), 4)

As of Python 2.7 unittest also includes its own test discovery mechanisms.
unittest in the standard library documentation

Doctest module searches for pieces of text that look like interactive Python sessions in docstrings, and then executes those sessions to verify that they work exactly as shown.

Doctests have a different use case than proper unit tests: they are usually less detailed and don’t catch special cases or obscure regression bugs. They are useful as an expressive documentation of the main use cases of a module and its components. However, doctests should run automatically each time the full test suite runs.

A simple doctest in a function:

def square(x):
    """Return the square of x.

    >>> square(2)
    4
    >>> square(-2)
    4
    """

    return x * x

if __name__ == '__main__':
    import doctest
    doctest.testmod()

When running this module from the command line as in python module.py, the doctests will run and complain if anything is not behaving as described in the docstrings.

Tools

py.test is a no-boilerplate alternative to Python’s standard unittest module.

$ pip install pytest

Despite being a fully-featured and extensible test tool, it boasts a simple syntax. Creating a test suite is as easy as writing a module with a couple of functions:

# content of test_sample.py
def func(x):
    return x + 1

def test_answer():
    assert func(3) == 5

and then running the py.test command

$ py.test
=========================== test session starts ============================
platform darwin -- Python 2.7.1 -- pytest-2.2.1
collecting ... collected 1 items

test_sample.py F

================================= FAILURES =================================
_______________________________ test_answer ________________________________

    def test_answer():
>       assert func(3) == 5
E       assert 4 == 5
E        +  where 4 = func(3)

test_sample.py:5: AssertionError
========================= 1 failed in 0.02 seconds =========================

is far less work than would be required for the equivalent functionality with the unittest module!

Nose extends unittest to make testing easier.

$ pip install nose

nose provides automatic test discovery to save you the hassle of manually creating test suites. It also provides numerous plugins for features such as xUnit-compatible test output, coverage reporting, and test selection.

Unittest2 is a backport of Python 2.7’s unittest module which has an improved API and better assertions over the one available in previous versions of Python.

If you’re using Python 2.6 or below, you can install it with pip

$ pip install unittest2

You may want to import the module under the name unittest to make porting code to newer versions of the module easier in the future

import unittest2 as unittest

class MyTest(unittest.TestCase):
    ...

This way if you ever switch to a newer Python version and no longer need the unittest2 module, you can simply change the import in your test module without the need to change any other code.

mock
unittest.mock is a library for testing in Python. As of Python 3.3, it is available in the standard library.
For older versions of Python:

$ pip install mock

It allows you to replace parts of your system under test with mock objects and make assertions about how they have been used.

For example, you can monkey-patch a method:

from mock import MagicMock
thing = ProductionClass()
thing.method = MagicMock(return_value=3)
thing.method(3, 4, 5, key='value')

thing.method.assert_called_with(3, 4, 5, key='value')

To mock classes or objects in a module under test, use the patch decorator. In the example below, an external search system is replaced with a mock that always returns the same result (but only for the duration of the test).

    class MockSearchQuerySet(SearchQuerySet):
        def __iter__(self):
            return iter(["foo", "bar", "baz"])
    return MockSearchQuerySet()

# SearchForm here refers to the imported class reference in myapp,
# not where the SearchForm class itself is imported from
@mock.patch('myapp.SearchForm.search', mock_search)
def test_new_watchlist_activities(self):
    # get_search_results runs a search and iterates over the result
    self.assertEqual(len(myapp.get_search_results(q="fish")), 3)

Mock has many other ways you can configure it and control its behavior.

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,362評論 6 544
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 99,577評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,486評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,852評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,600評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,944評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,944評論 3 447
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 43,108評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,652評論 1 336
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 41,385評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,616評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,111評論 5 364
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,798評論 3 350
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,205評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,537評論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,334評論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,570評論 2 379

推薦閱讀更多精彩內容