?? WGCNA | 值得你深入學(xué)習(xí)的生信分析方法!~(網(wǎng)狀分析-第一步-數(shù)據(jù)整理)

寫在前面

最近實(shí)在是忙的不行,根本沒時(shí)間更新,一到家就只想睡覺。??

今天寫個(gè)最近用到的分析方法,Weighted correlation network analysis (WGCNA),是非常經(jīng)典的生信分析方法了,現(xiàn)在被引有9913次了,馬上就要破萬啦。??

網(wǎng)上相關(guān)的教程也是不勝枚舉,但多多少少是有些不盡人意的地方,有的少步驟,有的代碼不全。??
這里在仔細(xì)閱讀了官方手冊后,在這里和大家一起認(rèn)真地step by step研究一下,查缺補(bǔ)漏吧。??

用到的包

rm(list = ls())
library(tidyverse)
library(WGCNA)

示例數(shù)據(jù)

數(shù)據(jù)是雌性小鼠肝臟的基因表達(dá)譜,來自這篇paper:??


Ghazalpour A, Doss S, Zhang B, et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2006;2(8):e130. doi:10.1371/journal.pgen.0020130


dat <-  read.csv("./FemaleLiver-Data/LiverFemale3600.csv")

DT::datatable(dat)

整理數(shù)據(jù)

我們先提取表達(dá)矩陣,這里是需要轉(zhuǎn)置的。??

datExpr0 <-  as.data.frame(t(dat[, -c(1:8)]))
names(datExpr0) <-  dat$substanceBXH
rownames(datExpr0) <-  names(dat)[-c(1:8)]

DT::datatable(datExpr0)

基因或樣本過濾

有一些表達(dá)值過低的基因或樣本,我們是需要過濾掉的,包里也是提供了相應(yīng)的函數(shù),我們看一下吧。??

5.1 查看是否有不好的基因或樣本

我們的數(shù)據(jù)里沒有不好的基因或者樣本。??

gsg <-  goodSamplesGenes(datExpr0, verbose = 3);
gsg$allOK

5.2 自動(dòng)化過濾

這里提供一個(gè)if語句,顯示不好的基因或者樣本,進(jìn)行自動(dòng)化過濾。??

if (!gsg$allOK)
{
  ## 打印已刪除的基因和樣本名稱
  if (sum(!gsg$goodGenes)>0) 
     printFlush(paste("Removing genes:", paste(names(datExpr0)[!gsg$goodGenes], collapse = ", ")));
  if (sum(!gsg$goodSamples)>0) 
     printFlush(paste("Removing samples:", paste(rownames(datExpr0)[!gsg$goodSamples], collapse = ", ")));
  datExpr0 = datExpr0[gsg$goodSamples, gsg$goodGenes]
}

樣本聚類

接著我們需要對(duì)樣本進(jìn)行聚類,有一些outlier的樣本可能還需要去除掉。??

6.1 繪制聚類樹

聚類的方法很多,這里整理一下:??

  • ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median", "centroid"
sampleTree <-  hclust(dist(datExpr0), method = "average");
plot(sampleTree, 
     main = "Sample clustering to detect outliers", 
     sub="", 
     xlab="", 
     cex.lab = 1.5, cex.axis = 1.5, cex.main = 2)

6.2 畫個(gè)紅線

這里我們有一個(gè)聚類比較差的樣本,我們把它去掉吧。??

plo9888888=t(sampleTree, 
     main = "Sample clustering to detect outliers", 
     sub="", 
     xlab="", 
     cex.lab = 1.5, cex.axis = 1.5, cex.main = 2
     )

abline(h = 15, col = "red")

6.3 去除聚類異常的樣本

clust <-  cutreeStatic(sampleTree, cutHeight = 15, minSize = 10)
table(clust)

6.4 提取過濾后矩陣

keepSamples <-  (clust == 1)
datExpr <-  datExpr0[keepSamples, ]
nGenes <-  ncol(datExpr)
nSamples <-  nrow(datExpr)

DT::datatable(datExpr)

加載臨床/性狀數(shù)據(jù)

接著我們把臨床或性狀數(shù)據(jù)(traits)導(dǎo)入進(jìn)來,和前面的聚類樹一起繪圖。??

7.1 讀入traits

traitData <-  read.csv("./FemaleLiver-Data/ClinicalTraits.csv");

DT::datatable(traitData)

7.2 整理traits

我們把一些不需要的traits去掉,只保留我們自己需要的,這里需要和樣本名一一對(duì)應(yīng)上。??

allTraits <-  traitData[, -c(31, 16)]
allTraits <-  allTraits[, c(2, 11:36) ]

femaleSamples <-  rownames(datExpr)
traitRows <-  match(femaleSamples, allTraits$Mice)
datTraits <-  allTraits[traitRows, -1]
rownames(datTraits) <-  allTraits[traitRows, 1]
collectGarbage()

DT::datatable(datTraits)

繪制最終聚類樹

sampleTree2 <-  hclust(dist(datExpr), method = "average")
traitColors <-  numbers2colors(datTraits, 
                               signed = F,
                               colors = greenWhiteRed(100)
                               )

plotDendroAndColors(sampleTree2,
                    traitColors,
                    groupLabels =  names(datTraits),
                    main = "Sample dendrogram and trait heatmap")

save一下

這里我們保存一下數(shù)據(jù),下期繼續(xù)。??

save(datExpr, datTraits, file = "FemaleLiver-01-dataInput.RData")

補(bǔ)充一下

現(xiàn)在很多paper都是先做差異基因分析,然后將DEGs提取出來做WGCNA,其實(shí)這種方法原作者并不推薦,還是推薦大家將所有基因初步過濾后進(jìn)行WGCNA的分析,原文如下:??

  • "We do not recommend filtering genes by differential expression. WGCNA is designed to be an unsupervised analysis method that clusters genes based on their expression profiles. Filtering genes by differential expression will lead to a set of correlated genes that will essentially form a single (or a few highly correlated) modules."

如何引用

??
Langfelder, P., Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008). https://doi.org/10.1186/1471-2105-9-559


<center>最后祝大家早日不卷!~</center>


點(diǎn)個(gè)在看吧各位~ ?.???? ??? ?

<center> <b>?? 往期精彩 <b> </center>

?? <font size=1>?? ComplexHeatmap | 顏狗寫的高顏值熱圖代碼!</font>
?? <font size=1>?? ComplexHeatmap | 你的熱圖注釋還擠在一起看不清嗎!?</font>
?? <font size=1>?? Google | 谷歌翻譯崩了我們怎么辦!?(附完美解決方案)</font>
?? <font size=1>?? scRNA-seq | 吐血整理的單細(xì)胞入門教程</font>
?? <font size=1>?? NetworkD3 | 讓我們一起畫個(gè)動(dòng)態(tài)的桑基圖吧~</font>
?? <font size=1>?? RColorBrewer | 再多的配色也能輕松搞定!~</font>
?? <font size=1>?? rms | 批量完成你的線性回歸</font>
?? <font size=1>?? CMplot | 完美復(fù)刻N(yùn)ature上的曼哈頓圖</font>
?? <font size=1>?? Network | 高顏值動(dòng)態(tài)網(wǎng)絡(luò)可視化工具</font>
?? <font size=1>?? boxjitter | 完美復(fù)刻N(yùn)ature上的高顏值統(tǒng)計(jì)圖</font>
?? <font size=1>?? linkET | 完美解決ggcor安裝失敗方案(附教程)</font>
?? <font size=1>......</font>

本文由mdnice多平臺(tái)發(fā)布

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 230,563評(píng)論 6 544
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 99,694評(píng)論 3 429
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,672評(píng)論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,965評(píng)論 1 318
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 72,690評(píng)論 6 413
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 56,019評(píng)論 1 329
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 44,013評(píng)論 3 449
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 43,188評(píng)論 0 290
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,718評(píng)論 1 336
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 41,438評(píng)論 3 360
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 43,667評(píng)論 1 374
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,149評(píng)論 5 365
  • 正文 年R本政府宣布,位于F島的核電站,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,845評(píng)論 3 351
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,252評(píng)論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,590評(píng)論 1 295
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 52,384評(píng)論 3 400
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 48,635評(píng)論 2 380

推薦閱讀更多精彩內(nèi)容