Master-Worker
模式:常用的并行計算模式,核心思想是系統由兩類進行協作工作:Master
進程 和Worker
進程。
Master
負責接收和分配任務,Worker
負責處理子任務。當各個Worker
子進程處理完成后,會將結果返回給Master
,由Master
做歸納與總結。
好處是將一個大任務分解成若干個小任務,并行執行,提高系統吞吐量。
實際具體的業務處理方法handle()
不應該寫在核心框架中,最好寫在Worker
子類中,且是抽象的,模板方法。在Main
函數中可以new
自己的子類,進行解耦。
package demo5;
public class Task {
private int id;
private String name;
private int price;
/**
* @return the id
*/
public int getId() {
return id;
}
/**
* @param id
* the id to set
*/
public void setId(int id) {
this.id = id;
}
/**
* @return the name
*/
public String getName() {
return name;
}
/**
* @param name
* the name to set
*/
public void setName(String name) {
this.name = name;
}
/**
* @return the price
*/
public int getPrice() {
return price;
}
/**
* @param price
* the price to set
*/
public void setPrice(int price) {
this.price = price;
}
}
package demo5;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
public abstract class Worker implements Runnable {
private ConcurrentLinkedQueue<Task> workQueue;
private ConcurrentHashMap<String, Object> resultMap;
public void setWorkerQueue(ConcurrentLinkedQueue<Task> workQueue) {
this.workQueue = workQueue;
}
public void setResultMap(ConcurrentHashMap<String, Object> resultMap) {
this.resultMap = resultMap;
}
public abstract Object handle(Task input);
@Override
public void run() {
while (true) {
Task input = this.workQueue.poll();
if (input == null) {
break;
}
// 真正去做業務處理
Object output = handle(input);
this.resultMap.put(Integer.toString(input.getId()), output);
}
}
}
package demo5;
public class MyWorker extends Worker {
public Object handle(Task input) {
Object output = null;
try {
Thread.sleep(500);
output = input.getPrice();
} catch (InterruptedException e) {
e.printStackTrace();
}
return output;
}
}
package demo5;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentLinkedQueue;
public class Master {
// 1.應該有一個盛裝任務的集合
private ConcurrentLinkedQueue<Task> workQueue = new ConcurrentLinkedQueue<Task>();
// 2.使用HashMap去盛裝所有worker對象
private HashMap<String, Thread> workers = new HashMap<String, Thread>();
// 3.使用一個容器盛裝每一個worker并發執行任務的結果集
private ConcurrentHashMap<String, Object> resultMap = new ConcurrentHashMap<String, Object>();
// 4.構造方法
public Master(Worker worker, int workerCount) {
// 每一個worker對象都需要有Master的引用workQueue用于任務的領取,resultMap用于任務的提交
worker.setWorkerQueue(this.workQueue);
worker.setResultMap(this.resultMap);
for (int i = 0; i < workerCount; i++) {
// key表示每一個worker的名字,value表示線程執行對象
workers.put("子節點" + Integer.toString(i), new Thread(worker));
}
}
// 5.提交方法
public void submit(Task task) {
this.workQueue.add(task);
}
// 6.需要有一個執行的方法,啟動應用程序,讓所有的worker工作
public void execute() {
for (Map.Entry<String, Thread> me : workers.entrySet()) {
me.getValue().start();
}
}
// 7.判斷線程是否執行完畢
public boolean isComplete() {
for (Map.Entry<String, Thread> me : workers.entrySet()) {
if (me.getValue().getState() != Thread.State.TERMINATED) {
return false;
}
}
return true;
}
// 8.返回結果集數據
public int getResult() {
int ret = 0;
for (Map.Entry<String, Object> me : resultMap.entrySet()) {
ret += (Integer) me.getValue();
}
return ret;
}
}
package demo5;
import java.util.Random;
public class Main {
public static void main(String[] args) {
System.out.println("我的機器可用processor數量:" + Runtime.getRuntime().availableProcessors());
Master master = new Master(new MyWorker(), Runtime.getRuntime().availableProcessors());
Random r = new Random();
for (int i = 0; i <= 100; i++) {
Task t = new Task();
t.setId(i);
t.setName("任務" + i);
t.setPrice(r.nextInt(1000));
master.submit(t);
}
master.execute();
long start = System.currentTimeMillis();
while (true) {
if (master.isComplete()) {
long end = System.currentTimeMillis() - start;
int result = master.getResult();
System.out.println("最終結果:" + result + ", 執行耗時: " + end);
break;
}
}
}
}