ConcurrentHashMap源碼解析

類結構圖

image

Node介紹

static class Node<K,V> implements Map.Entry<K,V> {
    //key的hash值
    final int hash; 
    //key
    final K key;
    //value
    volatile V val;
    //下一個node節點
    volatile Node<K,V> next;
    //構造函數
    Node(int hash, K key, V val, Node<K,V> next) {
        this.hash = hash;
        this.key = key;
        this.val = val;
        this.next = next;
    }

    public final K getKey()       { return key; }
    public final V getValue()     { return val; }
    //重寫hashcode();key的hashcode異或val的hashcode
    public final int hashCode()   { return key.hashCode() ^ val.hashCode(); }
    public final String toString(){ return key + "=" + val; }
    //不支持setValue操作
    public final V setValue(V value) {
        throw new UnsupportedOperationException();
    }
    //重寫equals
    public final boolean equals(Object o) {
        Object k, v, u; Map.Entry<?,?> e;
        return ((o instanceof Map.Entry) &&
                (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
                (v = e.getValue()) != null &&
                (k == key || k.equals(key)) &&
                (v == (u = val) || v.equals(u)));
    }

    /**
     * 這個方法用來支持map.get()方法。大概邏輯就是遍歷table尋找node
     */
    Node<K,V> find(int h, Object k) {
        //當前對象
        Node<K,V> e = this;
        if (k != null) {
            //遍歷數組,根據key查找
            do {
                K ek;
                if (e.hash == h &&
                    ((ek = e.key) == k || (ek != null && k.equals(ek))))
                    return e;
            } while ((e = e.next) != null);
        }
        return null;
    }
}

ForwardingNode介紹

//該類僅僅用在map擴容
static final class ForwardingNode<K,V> extends Node<K,V> {
   //nextTable表示擴容之后的數組。當一個線程訪問到ForwardingNode對象,就知道當前正在進行擴容操作,當前這個線程會幫助擴容
    final Node<K,V>[] nextTable;
    ForwardingNode(Node<K,V>[] tab) {
        super(MOVED, null, null, null);
        this.nextTable = tab;
    }

    Node<K,V> find(int h, Object k) {
               //遍歷新的數組
        outer: for (Node<K,V>[] tab = nextTable;;) {
            Node<K,V> e; int n;
            //檢驗k,tabl數組是否為空,如果為空直接返回null
            if (k == null || tab == null || (n = tab.length) == 0 || (e = tabAt(tab, (n - 1) & h)) == null)
                return null;
            for (;;) {
                int eh; K ek;
                //判斷bin上的第一個元素是否等于k,等于直接返回
                if ((eh = e.hash) == h &&
                    ((ek = e.key) == k || (ek != null && k.equals(ek))))
                    return e;
                //eh<0并且是ForwardingNode 那么繼續循環
                if (eh < 0) {
                    if (e instanceof ForwardingNode) {
                        tab = ((ForwardingNode<K,V>)e).nextTable;
                        continue outer;
                    }
                    else
                        //否則調用父類Node的find返回
                        return e.find(h, k);
                }
                if ((e = e.next) == null)
                    return null;
            }
        }
    }
}

成員變量

/**
 *最大容量:2^30=1073741824
 */
private static final int MAXIMUM_CAPACITY = 1 << 30;

/**
 * 默認容量 16 
 */
private static final int DEFAULT_CAPACITY = 16;


/**
 * 沒有用到,注釋解釋的用來兼容啥玩意的。看代碼只在序列化反序列化用到啦
 */
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;

/**
 * 加載因子
 */
private static final float LOAD_FACTOR = 0.75f;

/**
 *  轉為紅黑樹判斷條件之一 bin數量大于8
 */
static final int TREEIFY_THRESHOLD = 8;

/** 
  * 由樹轉換成鏈表的閾值UNTREEIFY_THRESHOLD當執行resize操作時
  * 當桶中bin的數量少于UNTREEIFY_THRESHOLD時使用鏈表來代替樹。默認值是6
 */
static final int UNTREEIFY_THRESHOLD = 6;

/**
 * 如果bin中的數量大于TREEIFY_THRESHOLD,但是capacity小于MIN_TREEIFY_CAPACITY,依然使用鏈表存儲。
 * 此時會進行resize操作,如果capacity大于MIN_TREEIFY_CAPACITY進行樹化
 */
static final int MIN_TREEIFY_CAPACITY = 64;

/**
 * 擴容線程每次最少要遷移16個hash桶
 */
private static final int MIN_TRANSFER_STRIDE = 16;

/**
 * The number of bits used for generation stamp in sizeCtl.
 * Must be at least 6 for 32bit arrays.
 */
private static int RESIZE_STAMP_BITS = 16;

/**
 * 幫助擴容線程最大值65535
 */
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;

/**
 * The bit shift for recording size stamp in sizeCtl.
 */
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;


//當前位置的Node是一個ForwardingNode節點
static final int MOVED     = -1;
//當前位置的Node為一個TreeBin節點
static final int TREEBIN   = -2; 
//暫存態,即這個節點沒有真正初始化完畢
static final int RESERVED  = -3; 
static final int HASH_BITS = 0x7fffffff; 

/** 可用處理器(cpu)數量 */
static final int NCPU=Runtime.getRuntime().availableProcessors();

/**
 * 桶數組,用來存儲Node元素的。默認為null,只在第一次put操作的進行初始化,該數組的長度永遠為2的n次方。
 */
transient volatile Node<K,V>[] table;

/**
 * 默認為null,當不為null,表示當前正在進行擴容操作,這個數組就是擴容之后的數組,長度為原數組的兩倍。
 */
private transient volatile Node<K,V>[] nextTable;

/**
 * map中元素個數,由于是多線程操作,baseCount記錄的不準確,所以要結合counterCells 來使用保證記錄的正確性。map的元素個數 = baseCount + 所有的cell的value值。
 */
private transient volatile long baseCount;

/**
 * 表初始化和擴容的控制位。
 * -1表示當前table數組正在被初始化;
 * -N表示有N-1個線程在進行擴容操作;
 * 0(默認值)表示當前table還未使用;此時table為null;
 * 正整數時,表示table的容量,默認是table大小的0.75倍,(n - (n>>>2))的方式來計算0.75
 */
private transient volatile int sizeCtl;

/**
 * 用來拆分table的,在擴容的時候
 */
private transient volatile int transferIndex;

/**
 * 用來實現cellsBusy鎖的,0無鎖,1鎖z
 */
private transient volatile int cellsBusy;

/**
 *  @sun.misc.Contended 用來避免偽共享 counterCells用來記錄出現并發的次數
 */
private transient volatile CounterCell[] counterCells;

// views
private transient KeySetView<K,V> keySet;
private transient ValuesView<K,V> values;
private transient EntrySetView<K,V> entrySet;

構造方法

//initialCapacity 初始容量
//loadFactor加載因子
//concurrencyLevel預估并發線程
public ConcurrentHashMap(int initialCapacity,float loadFactor, int concurrencyLevel) {
    //校驗參數
    if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0)
        throw new IllegalArgumentException();
       //如果容量小于預估并發線程數。則使用concurrencyLevel
    if (initialCapacity < concurrencyLevel)   
        initialCapacity = concurrencyLevel;   
    long size = (long)(1.0 + (long)initialCapacity / loadFactor);
    //tableSizeFor((int)size) 找到大于等于size的最小2的冪;得到數組容量       
    int cap = (size >= (long)MAXIMUM_CAPACITY) ?
        MAXIMUM_CAPACITY : tableSizeFor((int)size);
    this.sizeCtl = cap;
}
//傳入一個map
public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
    this.sizeCtl = DEFAULT_CAPACITY;
    putAll(m);
}
//根據初始容量初始化ConcurrentHashMap
public ConcurrentHashMap(int initialCapacity) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException();
    int cap = ((initialCapacity >= (MAXIMUM_CAPACITY >>> 1)) ?
               MAXIMUM_CAPACITY :
               tableSizeFor(initialCapacity + (initialCapacity >>> 1) + 1));
    this.sizeCtl = cap;
}

操作table的方法

//原子操作,返回table指定位置的元素
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
    return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}
//cas操作,在指定位置賦值
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
                                    Node<K,V> c, Node<K,V> v) {
    return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}
//原子操作,在指定位置賦值
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
    U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
}

initTable()解析

//初始化table
private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    //table等于null或者長度為0則初始化table
    while ((tab = table) == null || tab.length == 0) {
         //sizeCtl<0說明當前數組正在初始化。則當前讓出cpu
        if ((sc = sizeCtl) < 0)
            Thread.yield(); 
        //否則通過cas把SIZECTL修改成-1,表示當前正在初始化
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    //判斷初始化map的時候是否指定容量,沒有使用DEFAULT_CAPACITY
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                   //構造一個node數組指定長度
                   Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    //根據node數組長度重新計算sizeCtl。其實就是n*0.75得到下次擴容的閾值
                    sc = n - (n >>> 2);
                }
            } finally {
                //重新賦值sizeCtl
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}

put()解析

public V put(K key, V value) {
    return putVal(key, value, false);
}

//onlyIfAbsent true不改變存在的值;false改變存在的值
final V putVal(K key, V value, boolean onlyIfAbsent) {
       //檢驗key,value不能為空
    if (key == null || value == null) throw new NullPointerException();
    //計算hash值。高16位異或低16位與HASH_BITS
    int hash = spread(key.hashCode());
    int binCount = 0;
    //遍歷數組
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        //如果node數組為空,則初始化table
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        //返回(n - 1) & hash=index 位置的元素
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            //通過cas賦值。
            if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))     
               //這里操作不需要鎖,即使multi thread add 那么只會有一個執行成功。casTabAt是原子操作
                break;                   
        }
        //f.hash == MOVED表示當前數組正在擴容。則進行幫助擴容
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            //注意,這里針對數組的某一個桶加鎖
            synchronized (f) {
                //校驗f
                if (tabAt(tab, i) == f) {
                //fh >= 0得到的節點就是hash值相同的節點組成的鏈表的頭節點
                    if (fh >= 0) {
                        binCount = 1;
                        //遍歷數組
                        for (Node<K,V> e = f;; ++binCount) {
                            K ek;
                            //根據hash找到key,判斷是否可以覆蓋原來的值
                            //onlyIfAbsent=false覆蓋
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node<K,V> pred = e;
                            if ((e = e.next) == null) {
                //說明遍歷到鏈表的尾節點還沒找到元素,直接構建元素,跟鏈表連接上
                pred.next = new Node<K,V>(hash, key, value, null);
                                break;
                            }
                        }
                    }
                    //說明鏈表是紅黑樹
                    else if (f instanceof TreeBin) {
                        Node<K,V> p;
                        binCount = 2;
                    //把當前元素加入樹
                    if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {
                            //根據onlyIfAbsent判斷是否覆蓋
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            if (binCount != 0) {
                //binCount >= TREEIFY_THRESHOLD說明要把鏈表轉為紅黑樹
                if (binCount >= TREEIFY_THRESHOLD)
                    //鏈表轉樹
                    treeifyBin(tab, i);
                //老值不為空,返回原來的值
                if (oldVal != null)
                    return oldVal;
                break;
            }
        }
    }
    //map的容量加1,檢查map是否需要擴容
    addCount(1L, binCount);
    return null;
}
//計算hash值
static final int spread(int h) {
    return (h ^ (h >>> 16)) & HASH_BITS;
}

addCount()解析

//如果想要看懂這個方法,那么需要先去了解LongAddr實現的原理。
private final void addCount(long x, int check) {
    CounterCell[] as; long b, s;
      // counterCells!=null,或者通過cas修改baseCount失敗則進入if
    if ((as = counterCells) != null ||
        !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
        //執行到這里,說明counterCells=null并且cas修改失敗(修改失敗說明出現競爭)
        CounterCell a; long v; int m;
        //是否出現競爭,true沒有出現競爭
        boolean uncontended = true;
        //如果as=null,或者數組隨機一個node為null,或者cas修改CELLVALUE值失敗
        if (as == null || (m = as.length - 1) < 0 ||
            (a = as[ThreadLocalRandom.getProbe() & m]) == null ||
            !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
            //這個方法的原理跟longAccumulate()一模一樣。不懂的朋友可以去看完LongAddr源碼解析的文章
            fullAddCount(x, uncontended);
            return;
        }
         //如果check小于等于0不檢查是否需要擴容
        if (check <= 1)
            return;
         //獲取map的大小
        s = sumCount();
    }
    //檢查是否要擴容
    if (check >= 0) {
        Node<K,V>[] tab, nt; int n, sc;
        //根據map的容量s跟sizeCtl比較,判斷是否要擴容
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&(n = tab.length) < MAXIMUM_CAPACITY) {
            //返回擴容以后的標記位
            int rs = resizeStamp(n);
           //說明正在擴容,幫助擴容
            if (sc < 0) {
                 //判斷是否需要幫助擴容
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                //擴容線程數加1
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))                     //幫助擴容
                    transfer(tab, nt);
            }
          //當前線程是唯一的或是第一個發起擴容的線程  此時nextTable=null
          //sizeCtl = (resizeStamp(n) << RESIZE_STAMP_SHIFT) + 2表示只有一個線程擴容
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                          (rs <<RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
            s = sumCount();
        }
    }
}

helpTransfer()解析

 //這個邏輯跟上面if(check>=0)差不多。幫助擴容
final Node<K,V>[] helpTransfer(Node<K,V>[] tab, Node<K,V> f) {
    Node<K,V>[] nextTab; int sc;
    if (tab != null && (f instanceof ForwardingNode) &&
        (nextTab = ((ForwardingNode<K,V>)f).nextTable) != null) {
        int rs = resizeStamp(tab.length);
        while (nextTab == nextTable && table == tab &&
               (sc = sizeCtl) < 0) {
            if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||sc == rs + MAX_RESIZERS || transferIndex <= 0)
                break;
            if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) {
                transfer(tab, nextTab);
                break;
            }
        }
        return nextTab;
    }
    return table;
}

transfer()解析

private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
    int n = tab.length, stride;
     // 擴容線程每次最少要遷移16個hash桶
    if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
        stride = MIN_TRANSFER_STRIDE; 
    //第一次擴容的時候nextTab=null
    if (nextTab == null) {           
        try {
            @SuppressWarnings("unchecked")
            //數組長度擴大2倍
            Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
            nextTab = nt;
        } catch (Throwable ex) {      // try to cope with OOME
            sizeCtl = Integer.MAX_VALUE;
            return;
        }
        nextTable = nextTab;
        //賦值transferIndex
        transferIndex = n;
    }
    //獲取新數組的長度
    int nextn = nextTab.length;
    //如果已經處理(遷移)就設置為fwd節點
    ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
    //是否繼續向前查找的標志位
    boolean advance = true;
    //擴容操作是否完成標識。完成之前重新掃描一邊數組
    boolean finishing = false; 
    // 自旋,i表示數組下標,bound表示當前線程可以處理的當前桶區間最小下標
    for (int i = 0, bound = 0;;) {
        Node<K,V> f; int fh;
        while (advance) {
            int nextIndex, nextBound;
            //第一次不會進入這個if finishing=true說明擴容完成了
            if (--i >= bound || finishing)
                advance = false;
            //transferIndex<=0桶已經處理完了,不需要別的線程在處理
            else if ((nextIndex = transferIndex) <= 0) {
                i = -1;
                advance = false;
            }
            else if (U.compareAndSwapInt
                     (this, TRANSFERINDEX, nextIndex,
                      nextBound = (nextIndex > stride ?
                                   nextIndex - stride : 0))) {
                //這里可以得到當前線程處理數組的最小區間
                bound = nextBound;
                //得到線程處理數組的最大區間
                //那么這個線程處理的區間就是[bound,i]
                i = nextIndex - 1;
                advance = false;
            }
        }
         //i<0數組遍歷完成;i目前看到只等于n;i + n >= nextn擴容完成
        if (i < 0 || i >= n || i + n >= nextn) {
            int sc;
            if (finishing) {
                //用于擴容table
                nextTable = null;
                //擴容以后的心table
                table = nextTab;
                //設置sizeCtl為擴容后的0.75
                sizeCtl = (n << 1) - (n >>> 1);
                return;
            }
       /**
         第一個擴容的線程,執行transfer方法會設置 sizeCtl = (resizeStamp(n) << RESIZE_STAMP_SHIFT) + 2);
         幫助擴容的線程,執行transfer會設置 sizeCtl = sizeCtl+1退出transfer的方法的線程會設置 sizeCtl = sizeCtl-1;
         最后一個線程退出sc == (resizeStamp(n) <<RESIZE_STAMP_SHIFT) + 2),即 (sc - 2) == resizeStamp(n) << RESIZE_STAMP_SHIFT
        */
            if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
             //不相等,說明不到最后一個線程,直接退出transfer方法
           if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                    return;
                //最后一個線程,擴容完成
                finishing = advance = true;
                //重新檢查 
                i = n; 
            }
        }
        //獲取指定位置元素
        else if ((f = tabAt(tab, i)) == null)
             //指定位置插入fwd節點
            advance = casTabAt(tab, i, null, fwd);
        else if ((fh = f.hash) == MOVED)
             //已經處理
            advance = true; 
        else {
            //遷移數據
            synchronized (f) {
                //再次校驗f
                if (tabAt(tab, i) == f) {
                    //ln=lowNode 低位  hn=hignNode 高位
                    Node<K,V> ln, hn;
                    //fh>=0說明是鏈表。這里涉及到鏈表的反轉。可能反轉一部分,可能全反轉。ln等于null那么ln鏈表全反轉
                    if (fh >= 0) {
                        //把鏈表數據分為2類,0和1
                        int runBit = fh & n;
                      //lastRun記錄的是最后一個hash值變化的Node。
                        Node<K,V> lastRun = f;
                    //遍歷當前桶位置的鏈表,得到最后一個hash值變化的Node
               for (Node<K,V> p = f.next; p != null; p = p.next) {
                            int b = p.hash & n;
                            if (b != runBit) {
                                runBit = b;
                                lastRun = p;
                            }
                        }
                        //保持當前位置
                        if (runBit == 0) {
                            ln = lastRun;
                            hn = null;
                        }else {
                         //遷移位置old+n
                            hn = lastRun;
                            ln = null;
                        }
                        //遷移節點
                        for (Node<K,V> p = f; p != lastRun; p = p.next) {
                            int ph = p.hash; K pk = p.key; V pv = p.val;
                            if ((ph & n) == 0)
                                ln = new Node<K,V>(ph, pk, pv, ln);
                            else
                                hn = new Node<K,V>(ph, pk, pv, hn);
                        }
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                    //判斷是否是樹,關于樹就不講了,紅黑樹我也沒吃透
                    else if (f instanceof TreeBin) {
                        TreeBin<K,V> t = (TreeBin<K,V>)f;
                        TreeNode<K,V> lo = null, loTail = null;
                        TreeNode<K,V> hi = null, hiTail = null;
                        int lc = 0, hc = 0;
                        for (Node<K,V> e = t.first; e != null; e = e.next) {
                            int h = e.hash;
                            TreeNode<K,V> p = new TreeNode<K,V>
                                (h, e.key, e.val, null, null);
                            if ((h & n) == 0) {
                                if ((p.prev = loTail) == null)
                                    lo = p;
                                else
                                    loTail.next = p;
                                loTail = p;
                                ++lc;
                            }
                            else {
                                if ((p.prev = hiTail) == null)
                                    hi = p;
                                else
                                    hiTail.next = p;
                                hiTail = p;
                                ++hc;
                            }
                        }
                        //擴容完以后判斷是否樹是否要轉為鏈表
                        ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                            (hc != 0) ? new TreeBin<K,V>(lo) : t;
                        hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                            (lc != 0) ? new TreeBin<K,V>(hi) : t;
                        setTabAt(nextTab, i, ln);
                        setTabAt(nextTab, i + n, hn);
                        setTabAt(tab, i, fwd);
                        advance = true;
                    }
                }
            }
        }
    }
}

get()方法解析

public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    //獲取key的hash值
    int h = spread(key.hashCode());
    //table不等于null,計算index獲取元素不等于null
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
         //判斷第一個節點是否相等
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        //小于0說明在擴容。需要調用forwoard的find()
        else if (eh < 0)
            return (p = e.find(h, key)) != null ? p.val : null;
        //遍歷鏈表獲取
        while ((e = e.next) != null) {
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}

閱讀更多文章

image.png
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容