安裝Tensorflow安裝問題記錄

問題1:

pip安裝時,提示找不到對應的版本“No matching distribution found ”c:\>pip install tensorflow-gpuCollecting tensorflow-gpu? Could not find a version that satisfies the requirement tensorflow-gpu (from versions: )No matching distribution found for tensorflow-gpu

解答:可用“python -m pip install tensorflow-gpu” 或者 “pip install 版本鏈接”

問題2:

FileNotFoundError: [WinError 3] 系統(tǒng)找不到指定的路徑。: 'c:\\users\\administrator.chenbo-ovr097b6\\appdata\\local\\programs\\python\\python35-32\\lib\\site-packages\\pip\\_vendor\\requests\\packages\\urllib3\\packages\\ssl_match_hostname\\__pycache__\\__init__.cpython-35.pyc' -> 'C:\\Users\\ADMINI~1.CHE\\AppData\\Local\\Temp\\2\\pip-xsio8aj7-uninstall\\users\\administrator.chenbo-ovr097b6\\appdata\\local\\programs\\python\\python35-32\\lib\\site-packages\\pip\\_vendor\\requests\\packages\\urllib3\\packages\\ssl_match_hostname\\__pycache__\\__init__.cpython-35.pyc'

解答:重新配置環(huán)境變量問題

問題3:

安裝python后,提示pip無法被執(zhí)行,需要重新安裝C:\Users\Administrator.chenbo-ovr097b6\AppData\Local\Programs\Python\Python35-32\python.exe: No module named pip.__main__; 'pip' is a package and cannot be directly executed

解答:python -m ensurepip

問題4:

找不到指定模塊>>> import tensorflow as tfTraceback (most recent call last):? File "C:\Users\Administrator.chenbo-ovr097b6\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 18, in swig_import_helper? ? return importlib.import_module(mname)? File "C:\Users\Administrator.chenbo-ovr097b6\AppData\Local\Programs\Python\Python36\lib\importlib\__init__.py", line 126, in import_module? ? return _bootstrap._gcd_import(name[level:], package, level)? File "", line 978, in _gcd_import? File "", line 961, in _find_and_load? File "", line 950, in _find_and_load_unlocked? File "", line 648, in _load_unlocked? File "", line 560, in module_from_spec? File "", line 922, in create_module? File "", line 205, in _call_with_frames_removedImportError: DLL load failed: 找不到指定的模塊。During handling of the above exception, another exception occurred:Traceback (most recent call last):? File "C:\Users\Administrator.chenbo-ovr097b6\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 41, infrom tensorflow.python.pywrap_tensorflow_internal import *? File "C:\Users\Administrator.chenbo-ovr097b6\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 21, in_pywrap_tensorflow_internal = swig_import_helper()

File "C:\Users\Administrator.chenbo-ovr097b6\AppData\Local\Programs\Python\Python36\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 20, in swig_import_helper

return importlib.import_module('_pywrap_tensorflow_internal')

File "C:\Users\Administrator.chenbo-ovr097b6\AppData\Local\Programs\Python\Python36\lib\importlib\__init__.py", line 126, in import_module

return _bootstrap._gcd_import(name[level:], package, level)

ModuleNotFoundError: No module named '_pywrap_tensorflow_internal'

During handling of the above exception, another exception occurred:

解答:

missing MSVCP140.dll,安裝https://www.microsoft.com/en-us/download/details.aspx?id=53587

參考鏈接:https://github.com/tensorflow/tensorflow/issues/5949

問題5:

沒有使用GPU進行加速

>>> import tensorflow as tf

>>> sess = tf.Session()

2017-09-18 14:57:45.014544: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\36\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.

2017-09-18 14:57:45.015422: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\36\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.

>>>

>>> sess = tf.Session()

>>> a = tf.constant(1)

>>> b = tf.constant(2)

>>> print(sess.run(a+b))

3

>>>

解答:

1.CPU的加速效果更好 --> 運行其他代碼嘗試

2.框架安裝有問題,換成其他方式安裝


問題6:

顯存不夠

>>> import tensorflow as tf

>>> hello = tf.constant('Hello, TensorFlow!')

>>> sess = tf.Session()

2017-09-18 18:47:48.550964: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow librarywasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.

2017-09-18 18:47:48.551931: W C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow librarywasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.

2017-09-18 18:47:49.117177: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:955] Found device 0 with

properties:

name: Tesla M60

major: 5 minor: 2 memoryClockRate (GHz) 1.1775

pciBusID 0000:00:15.0

Total memory: 8.00GiB

Free memory: 7.64GiB

2017-09-18 18:47:49.117837: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:976] DMA: 02017-09-18 18:47:49.121139: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:986] 0:? Y

2017-09-18 18:47:49.122430: I C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\core\common_runtime\gpu\gpu_device.cc:1045] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Tesla M60, pci bus id: 0000:00:15.0)

2017-09-18 18:47:49.265265: E C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\stream_executor\cuda\cuda_driver.cc:924] failed to allocate 7.

26G (7792089088 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY2017-09-18 18:47:49.401091: E C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\stream_executor\cuda\cuda_driver.cc:924] failed to allocate 6.

53G (7012879872 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY

2017-09-18 18:47:49.537186: E C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\stream_executor\cuda\cuda_driver.cc:924] failed to allocate 5.88G (6311591936 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY

2017-09-18 18:47:49.674310: E C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\stream_executor\cuda\cuda_driver.cc:924] failed to allocate 5.29G (5680432640 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY

2017-09-18 18:47:49.813375: E C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\stream_executor\cuda\cuda_driver.cc:924] failed to allocate 4.76G (5112389120 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY

2017-09-18 18:47:49.949057: E C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\stream_executor\cuda\cuda_driver.cc:924] failed to allocate 4.28G (4601149952 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY

2017-09-18 18:47:49.963002: E C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\stream_executor\cuda\cuda_driver.cc:924] failed to allocate 3.86G (4141034752 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY

2017-09-18 18:47:49.975810: E C:\tf_jenkins\home\workspace\rel-win\M\windows-gpu\PY\36\tensorflow\stream_executor\cuda\cuda_driver.cc:924] failed to allocate 3.47G (3726931200 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY

>>> print(sess.run(hello))

b'Hello, TensorFlow!'

>>>

解決方法:

GPU的顯存是按照core進行分配的,初次創(chuàng)建的時候,會盡可能分配更多的顯存給框架,如果多個任務并行,就會出現(xiàn)顯存爭搶的問題,導致CUDA OOM

如果同時跑多個任務,則可以通過一下命令,修改沒個session分配的緩存

config = tf.ConfigProto(log_device_placement=False, allow_soft_placement=True)

config.gpu_options.allow_growth=True

sess = tf.Session(config=config)

如果只跑一個任務,可能是驅(qū)動版本不對可以更新驅(qū)動嘗試

Nvidia驅(qū)動for windows:http://www.nvidia.cn/content/DriverDownload-March2009/confirmation.php?url=/Windows/Quadro_Certified/385.08/385.08-tesla-desktop-winserver2008-2012r2-64bit-international-whql.exe&lang=cn&type=Tesla

http://cn.download.nvidia.com/Windows/Quadro_Certified/385.08/385.08-tesla-desktop-winserver2008-2012r2-64bit-international-whql.exe

最后編輯于
?著作權歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,646評論 6 533
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,595評論 3 418
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,560評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,035評論 1 314
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,814評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,224評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,301評論 3 442
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,444評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,988評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 40,804評論 3 355
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,998評論 1 370
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,544評論 5 360
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 44,237評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,665評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,927評論 1 287
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,706評論 3 393
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,993評論 2 374

推薦閱讀更多精彩內(nèi)容

  • 1. 介紹 首先讓我們來看看TensorFlow! 但是在我們開始之前,我們先來看看Python API中的Ten...
    JasonJe閱讀 11,782評論 1 32
  • 1c8b: 回顧與概述 這篇文章詳細介紹了Tensorflow的安裝和校驗安裝是否成功的教程,涵蓋了在Ubuntu...
    darkie閱讀 3,215評論 0 4
  • 網(wǎng)址 下載與安裝 你可以使用我們提供的 Pip, Docker, Virtualenv, Anaconda 或 源...
    九七學姐閱讀 4,773評論 3 11
  • 安裝tensorflow 下載tensorflow源文件 Gitclone--recurse-submodules...
    風果閱讀 1,964評論 0 2
  • 早上八點起開會到下午五點,大組會和錦囊會連著一起開的,挺累的。大組會上組員間相互貢獻,分享各自的心得。大家都很努力...
    葉子卷閱讀 351評論 0 1