1. 面向對象特征
- 抽象:抽象是將一類對象的共同特征總結出來構造類的過程,包括數據抽象和行為抽象兩方面。抽象只關注對象有哪些屬性和行為,并不關注這些行為的細節是什么。
- 繼承:繼承是從已有類得到繼承信息創建新類的過程。提供繼承信息的類被稱為父類(超類、基類);得到繼承信息的類被稱為子類(派生類)。繼承讓變化中的軟件系統有了一定的延續性,同時繼承也是封裝程序中可變因素的重要手段(如果不能理解請閱讀閻宏博士的《Java與模式》或《設計模式精解》中關于橋梁模式的部分)。
- 封裝:通常認為封裝是把數據和操作數據的方法綁定起來,對數據的訪問只能通過已定義的接口。面向對象的本質就是將現實世界描繪成一系列完全自治、封閉的對象。我們在類中編寫的方法就是對實現細節的一種封裝;我們編寫一個類就是對數據和數據操作的封裝。可以說,封裝就是隱藏一切可隱藏的東西,只向外界提供最簡單的編程接口(可以想想普通洗衣機和全自動洗衣機的差別,明顯全自動洗衣機封裝更好因此操作起來更簡單;我們現在使用的智能手機也是封裝得足夠好的,因為幾個按鍵就搞定了所有的事情)。
- 多態:多態性是指允許不同子類型的對象對同一消息作出不同的響應。簡單的說就是用同樣的對象引用調用同樣的方法但是做了不同的事情。多態性分為編譯時的多態性和運行時的多態性。如果將對象的方法視為對象向外界提供的服務,那么運行時的多態性可以解釋為:當A系統訪問B系統提供的服務時,B系統有多種提供服務的方式,但一切對A系統來說都是透明的(就像電動剃須刀是A系統,它的供電系統是B系統,B系統可以使用電池供電或者用交流電,甚至還有可能是太陽能,A系統只會通過B類對象調用供電的方法,但并不知道供電系統的底層實現是什么,究竟通過何種方式獲得了動力)。方法重載(overload)實現的是編譯時的多態性(也稱為前綁定),而方法重寫(override)實現的是運行時的多態性(也稱為后綁定,覆蓋)。運行時的多態是面向對象最精髓的東西,要實現多態需要做兩件事:1). 方法重寫(子類繼承父類并重寫父類中已有的或抽象的方法);2). 對象造型(用父類型引用引用子類型對象,這樣同樣的引用調用同樣的方法就會根據子類對象的不同而表現出不同的行為)。
2. 訪問修飾符public,private,protected以及default區別
修飾符 | 當前類 | 同 包 | 子 類 | 其他包 |
---|---|---|---|---|
public | √ | √ | √ | √ |
protected | √ | √ | √ | × |
default | √ | √ | × | × |
private | √ | × | × | × |
3. 數據類型
Java中的基本數據類型只有8個:byte、short、int、long、float、double、char、boolean;除了基本類型(primitive type),剩下的都是引用類型(reference type),Java 5以后引入的枚舉類型也算是一種比較特殊的引用類型。
4. 賦值經典題
float f=3.4 是否正確?
不正確。3.4是雙精度數,將雙精度型(double)賦值給浮點型(float)屬于下轉型(down-casting,也稱為窄化)會造成精度損失,因此需要強制類型轉換float f =(float)3.4; 或者寫成float f =3.4F
short s1 = 1; s1 = s1 + 1有錯嗎?short s1 = 1; s1 += 1有錯嗎?
答:對于short s1 = 1; s1 = s1 + 1;由于1是int類型,因此s1+1運算結果也是int 型,需要強制轉換類型才能賦值給short型。而short s1 = 1; s1 += 1;可以正確編譯,因為s1+= 1;相當于s1 = (short)(s1 + 1);其中有隱含的強制類型轉換。
5. 包裝類
Java是一個近乎純潔的面向對象編程語言,但是為了編程的方便還是引入了基本數據類型,但是為了能夠將這些基本數據類型當成對象操作,Java為每一個基本數據類型都引入了對應的包裝類型(wrapper class)。
- 原始類型: boolean,char,byte,short,int,long,float,double
- 包裝類型:Boolean,Character,Byte,Short,Integer,Long,Float,Double
例題1:
class AutoUnboxingTest {
public static void main(String[] args) {
Integer a = new Integer(3);
Integer b = 3; // 將3自動裝箱成Integer類型
int c = 3;
System.out.println(a == b); // false 兩個引用沒有引用同一對象
System.out.println(a == c); // true a自動拆箱成int類型再和c比較
}
}
例題2:
public class Test03 {
public static void main(String[] args) {
Integer f1 = 100, f2 = 100, f3 = 150, f4 = 150;
System.out.println(f1 == f2);
System.out.println(f3 == f4);
}
}
如果不明就里很容易認為兩個輸出要么都是true要么都是false。首先需要注意的是f1、f2、f3、f4四個變量都是Integer對象引用,所以下面的==運算比較的不是值而是引用。裝箱的本質是什么呢?當我們給一個Integer對象賦一個int值的時候,會調用Integer類的靜態方法valueOf,如果看看valueOf的源代碼就知道發生了什么。
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
IntegerCache是Integer的內部類,其代碼如下所示:
/**
* Cache to support the object identity semantics of autoboxing for values between
* -128 and 127 (inclusive) as required by JLS.
*
* The cache is initialized on first usage. The size of the cache
* may be controlled by the {@code -XX:AutoBoxCacheMax=<size>} option.
* During VM initialization, java.lang.Integer.IntegerCache.high property
* may be set and saved in the private system properties in the
* sun.misc.VM class.
*/
private static class IntegerCache {
static final int low = -128;
static final int high;
static final Integer cache[];
static {
// high value may be configured by property
int h = 127;
String integerCacheHighPropValue =
sun.misc.VM.getSavedProperty("java.lang.Integer.IntegerCache.high");
if (integerCacheHighPropValue != null) {
try {
int i = parseInt(integerCacheHighPropValue);
i = Math.max(i, 127);
// Maximum array size is Integer.MAX_VALUE
h = Math.min(i, Integer.MAX_VALUE - (-low) -1);
} catch( NumberFormatException nfe) {
// If the property cannot be parsed into an int, ignore it.
}
}
high = h;
cache = new Integer[(high - low) + 1];
int j = low;
for(int k = 0; k < cache.length; k++)
cache[k] = new Integer(j++);
// range [-128, 127] must be interned (JLS7 5.1.7)
assert IntegerCache.high >= 127;
}
private IntegerCache() {}
如果整型字面量的值在-128到127之間,那么不會new新的Integer對象,而是直接引用常量池中的Integer對象,所以上面的面試題中f1==f2的結果是true,而f3==f4的結果是false。
6. &和&&區別
&運算符有兩種用法:(1)按位與;(2)邏輯與。
&&運算符是短路與運算。
邏輯與跟短路與的差別是非常巨大的,雖然二者都要求運算符左右兩端的布爾值都是true整個表達式的值才是true。&&之所以稱為短路運算是因為,如果&&左邊的表達式的值是false,右邊的表達式會被直接短路掉,不會進行運算。很多時候我們可能都需要用&&而不是&,
例如在驗證用戶登錄時判定用戶名不是null而且不是空字符串,應當寫為:username != null &&!username.equals(""),二者的順序不能交換,更不能用&運算符,因為第一個條件如果不成立,根本不能進行字符串的equals比較,否則會產生NullPointerException異常。
注意:邏輯或運算符(|)和短路或運算符(||)的差別也是如此。
7. 棧、堆和方法區
- 通常我們定義一個基本數據類型的變量,一個對象的引用,還有就是函數調用的現場保存都使用JVM中的棧空間;
- 通過new關鍵字和構造器創建的對象則放在堆空間,堆是垃圾收集器管理的主要區域,由于現在的垃圾收集器都采用分代收集算法,所以堆空間還可以細分為新生代和老生代,再具體一點可以分為Eden、Survivor(又可分為From Survivor和To Survivor)、Tenured;
- 方法區和堆都是各個線程共享的內存區域,用于存儲已經被JVM加載的類信息、常量、靜態變量、JIT編譯器編譯后的代碼等數據;程序中的字面量(literal)如直接書寫的100、"hello"和常量都是放在常量池中,常量池是方法區的一部分,。棧空間操作起來最快但是棧很小,通常大量的對象都是放在堆空間,棧和堆的大小都可以通過JVM的啟動參數來進行調整,棧空間用光了會引發StackOverflowError,而堆和常量池空間不足則會引發OutOfMemoryError。
8. 構造器
構造器不能被繼承,因此不能被重寫,但可以被重載。
9. String, StringBuilder, StringBuffer
Java平臺提供了兩種類型的字符串:String和StringBuffer/StringBuilder,它們可以儲存和操作字符串。其中
- String是只讀字符串,也就意味著String引用的字符串內容是不能被改變的。
- StringBuffer/StringBuilder類表示的字符串對象可以直接進行修改。StringBuilder是Java 5中引入的,它和StringBuffer的方法完全相同,區別在于它是在單線程環境下使用的,因為它的所有方面都沒有被synchronized修飾,因此它的效率也比StringBuffer要高。
- String對象的intern()方法會得到字符串對象在常量池中對應的版本的引用(如果常量池中有一個字符串與String對象的equals結果是true),如果常量池中沒有對應的字符串,則該字符串將被添加到常量池中,然后返回常量池中字符串的引用;
10. 重載(Overload)和重寫(Override)的區別
方法的重載和重寫都是實現多態的方式,區別在于前者實現的是編譯時的多態性,而后者實現的是運行時的多態性。重載發生在一個類中,同名的方法如果有不同的參數列表(參數類型不同、參數個數不同或者二者都不同)則視為重載;重寫發生在子類與父類之間
【重寫】兩同兩小一大原則
兩同:方法名相同;形參列表相同
兩小:子類方法返回值類型應比父類方法返回值類型更小或相等;
子類方法聲明拋出的異常應比父類方法聲明拋出的異常類更小或相等
一大:子類權限比父類大或相等
11. JVM加載class文件原理機制
JVM中類的裝載是由類加載器(ClassLoader)和它的子類來實現的,Java中的類加載器是一個重要的Java運行時系統組件,它負責在運行時查找和裝入類文件中的類。
由于Java的跨平臺性,經過編譯的Java源程序并不是一個可執行程序,而是一個或多個類文件。當Java程序需要使用某個類時,JVM會確保這個類已經被加載、連接(驗證、準備和解析)和初始化。
- 類的加載是指把類的.class文件中的數據讀入到內存中,通常是創建一個字節數組讀入.class文件,然后產生與所加載類對應的Class對象。加載完成后,Class對象還不完整,所以此時的類還不可用。
- 當類被加載后就進入連接階段,這一階段包括驗證、準備(為靜態變量分配內存并設置默認的初始值)和解析(將符號引用替換為直接引用)三個步驟。
- 最后JVM對類進行初始化,包括:1)如果類存在直接的父類并且這個類還沒有被初始化,那么就先初始化父類;2)如果類中存在初始化語句,就依次執行這些初始化語句。
類的加載是由類加載器完成的,類加載器包括:根加載器(BootStrap)、擴展加載器(Extension)、系統加載器(System)和用戶自定義類加載器(java.lang.ClassLoader的子類)。從Java 2(JDK 1.2)開始,類加載過程采取了父親委托機制(PDM)。PDM更好的保證了Java平臺的安全性,在該機制中,JVM自帶的Bootstrap是根加載器,其他的加載器都有且僅有一個父類加載器。類的加載首先請求父類加載器加載,父類加載器無能為力時才由其子類加載器自行加載。JVM不會向Java程序提供對Bootstrap的引用。下面是關于幾個類加載器的說明:
- Bootstrap:一般用本地代碼實現,負責加載JVM基礎核心類庫(rt.jar);
- Extension:從java.ext.dirs系統屬性所指定的目錄中加載類庫,它的父加載器是Bootstrap;
- System:又叫應用類加載器,其父類是Extension。它是應用最廣泛的類加載器。它從環境變量classpath或者系統屬性java.class.path所指定的目錄中記載類,是用戶自定義加載器的默認父加載器。
12. 抽象類和接口異同
- 抽象類和接口都不能夠實例化,但可以定義抽象類和接口類型的引用。一個類如果繼承了某個抽象類或者實現了某個接口都需要對其中的抽象方法全部進行實現,否則該類仍然需要被聲明為抽象類。
- 接口比抽象類更加抽象,因為抽象類中可以定義構造器,可以有抽象方法和具體方法,而接口中不能定義構造器而且其中的方法全部都是抽象方法。抽象類中的成員可以是private、默認、protected、public的,而接口中的成員全都是public的。抽象類中可以定義成員變量,而接口中定義的成員變量實際上都是常量。有抽象方法的類必須被聲明為抽象類,而抽象類未必要有抽象方法。
13. 內部類
- 為什么使用內部類?
使用內部類最吸引人的原因是:每個內部類都能獨立地繼承一個(接口的)實現,所以無論外圍類是否已經繼承了某個(接口的)實現,對于內部類都沒有影響1 - 使用內部類最大的優點就在于它能夠非常好的解決多重繼承的問題,使用內部類還能夠為我們帶來如下特性:
- 內部類可以用多個實例,每個實例都有自己的狀態信息,并且與其他外圍對象的信息相互獨。
- 在單個外圍類中,可以讓多個內部類以不同的方式實現同一個接口,或者繼承同一個類。
- 創建內部類對象的時刻并不依賴于外圍類對象的創建。
- 內部類并沒有令人迷惑的“is-a”關系,他就是一個獨立的實體。
- 內部類提供了更好的封裝,除了該外圍類,其他類都不能訪問。
- 內部類分類:
- 成員內部類:
public class Outer{
private int age = 99;
String name = "Coco";
public class Inner{
String name = "Jayden";
public void show(){
System.out.println(Outer.this.name);
System.out.println(name);
System.out.println(age);
}
}
public Inner getInnerClass(){
return new Inner();
}
public static void main(String[] args){
Outer o = new Outer();
Inner in = o.new Inner();
in.show();
}
}
成員內部類中不能存在任何 static 的變量和方法,可以定義常量:
因為非靜態內部類是要依賴于外部類的實例,而靜態變量和方法是不依賴于對象的,僅與類相關,簡而言之:在加載靜態域時,根本沒有外部類,所在在非靜態內部類中不能定義靜態域或方法,編譯不通過;非靜態內部類的作用域是實例級別;常量是在編譯器就確定的,放到所謂的常量池了
★★友情提示:
a.外部類是不能直接使用內部類的成員和方法的,可先創建內部類的對象,然后通過內部類的對象來訪問其成員變量和方法;
b.如果外部類和內部類具有相同的成員變量或方法,內部類默認訪問自己的成員變量或方法,如果要訪問外部類的成員變量,可以使用 this 關鍵字,如:Outer.this.name
- 靜態內部類: 是 static 修飾的內部類
a.靜態內部類不能直接訪問外部類的非靜態成員,但可以通過 new 外部類().成員 的方式訪問
b.如果外部類的靜態成員與內部類的成員名稱相同,可通過“類名.靜態成員”訪問外部類的靜態成員;如果外部類的靜態成員與內部類的成員名稱不相同,則可通過“成員名”直接調用外部類的靜態成員
c.創建靜態內部類的對象時,不需要外部類的對象,可以直接創建 內部類 對象名 = new 內部類();
public class Outer{
private int age = 99;
static String name = "Coco";
public static class Inner{
String name = "Jayden";
public void show(){
System.out.println(Outer.name);
System.out.println(name);
}
}
public static void main(String[] args){
Inner i = new Inner();
i.show();
}
}
3.方法內部類:訪問僅限于方法內或者該作用域內
a.局部內部類就像是方法里面的一個局部變量一樣,是不能有 public、protected、private 以及 static 修飾符的
b.只能訪問方法中定義的 final 類型的局部變量
因為:當方法被調用運行完畢之后,局部變量就已消亡了。但內部類對象可能還存在,直到沒有被引用時才會消亡。此時就會出現一種情況,就是內部類要訪問一個不存在的局部變量;==>使用final修飾符不僅會保持對象的引用不會改變,而且編譯器還會持續維護這個對象在回調方法中的生命周期.局部內部類并不是直接調用方法傳進來的參數,而是內部類將傳進來的參數通過自己的構造器備份到了自己的內部,自己內部的方法調用的實際是自己的屬性而不是外部類方法的參數;
/*
使用的形參為何要為 final???
在內部類中的屬性和外部方法的參數兩者從外表上看是同一個東西,但實際上卻不是,所以他們兩者是可以任意變化的,也就是說在內部類中對屬性的改變并不會影響到外部的形參,這從程序員的角度來看這是不可行的,畢竟站在程序的角度來看這兩個根本就是同一個,如果內部類改變了,而外部方法的形參卻沒有改變這是難以理解和不可接受的,所以為了保持參數的一致性,就規定使用 final 來避免形參的不改變
*/
public class Outer{
public void Show(){
final int a = 25;
int b = 13;
class Inner{
int c = 2;
public void print(){
System.out.println("訪問外部類:" + a);
System.out.println("訪問內部類:" + c);
}
}
Inner i = new Inner();
i.print();
}
public static void main(String[] args){
Outer o = new Outer();
o.show();
}
}
(3).注意:在JDK8版本之中,方法內部類中調用方法中的局部變量,可以不需要修飾為 final,匿名內部類也是一樣的,主要是JDK8之后增加了 Effectively final 功能
http://docs.oracle.com/javase/tutorial/java/javaOO/localclasses.html
反編譯jdk8編譯之后的class文件,發現內部類引用外部的局部變量都是 final 修飾的
4.匿名內部類:
創建格式為:
new 父類構造器(參數列表)|實現接口(){
//匿名內部類的類體實現
}
a. 匿名內部類是直接使用 new 來生成一個對象的引用;
b. 創建匿名內部類時它會立即創建一個該類的實例,該類的定義會立即消失,所以匿名內部類是不能夠被重復使用;
c.使用匿名內部類時,我們必須是繼承一個類或者實現一個接口,但是兩者不可兼得,同時也只能繼承一個類或者實現一個接口;
d.匿名內部類中是不能定義構造函數的,匿名內部類中不能存在任何的靜態成員變量和靜態方法;
e.匿名內部類中不能存在任何的靜態成員變量和靜態方法,匿名內部類不能是抽象的,它必須要實現繼承的類或者實現的接口的所有抽象方法
f.匿名內部類初始化:使用構造代碼塊,利用構造代碼塊能夠達到為匿名內部類創建一個構造器的效果
public class OuterClass {
public InnerClass getInnerClass(final int num,String str2){
return new InnerClass(){
int number = num + 3;
public int getNumber(){
return number;
}
}; /* 注意:分號不能省 */
}
public static void main(String[] args) {
OuterClass out = new OuterClass();
InnerClass inner = out.getInnerClass(2, "chenssy");
System.out.println(inner.getNumber());
}
}
interface InnerClass {
int getNumber();
}
14. 內存泄漏
理論上Java因為有垃圾回收機制(GC)不會存在內存泄露問題(這也是Java被廣泛使用于服務器端編程的一個重要原因);然而在實際開發中,可能會存在無用但可達的對象,這些對象不能被GC回收,因此也會導致內存泄露的發生。例如Hibernate的Session(一級緩存)中的對象屬于持久態,垃圾回收器是不會回收這些對象的,然而這些對象中可能存在無用的垃圾對象,如果不及時關閉(close)或清空(flush)一級緩存就可能導致內存泄露。
15. Error和Exception
Error表示系統級的錯誤和程序不必處理的異常,是恢復不是不可能但很困難的情況下的一種嚴重問題;比如內存溢出,不可能指望程序能處理這樣的情況;
Exception表示需要捕捉或者需要程序進行處理的異常,是一種設計或實現問題;也就是說,它表示如果程序運行正常,從不會發生的情況。
*RuntimeException運行時異常表示虛擬機的通常操作中可能遇到的異常,是一種常見運行錯誤,只要程序設計得沒有問題通常就不會發生。
常見:
ArithmeticException(算術異常)
ClassCastException (類轉換異常)
IllegalArgumentException (非法參數異常)
IndexOutOfBoundsException (下標越界異常)
NullPointerException (空指針異常)
SecurityException (安全異常)受檢異常跟程序運行的上下文環境有關,即使程序設計無誤,仍然可能因使用的問題而引發。Java編譯器要求方法必須聲明拋出可能發生的受檢異常,但是并不要求必須聲明拋出未被捕獲的運行時異常。異常和繼承一樣,是面向對象程序設計中經常被濫用的東西,在Effective Java中對異常的使用給出了以下指導原則:
- 不要將異常處理用于正常的控制流(設計良好的API不應該強迫它的調用者為了正常的控制流而使用異常)
- 對可以恢復的情況使用受檢異常,對編程錯誤使用運行時異常
- 避免不必要的使用受檢異常(可以通過一些狀態檢測手段來避免異常的發生)
- 優先使用標準的異常
- 每個方法拋出的異常都要有文檔
- 保持異常的原子性
- 不要在catch中忽略掉捕獲到的異常
16. ArrayList、Vector、LinkedList的存儲性能和特性
- ArrayList 和Vector都是使用數組方式存儲數據,此數組元素數大于實際存儲的數據以便增加和插入元素,它們都允許直接按序號索引元素,但是插入元素要涉及數組元素移動等內存操作,所以索引數據快而插入數據慢,Vector中的方法由于添加了synchronized修飾,因此Vector是線程安全的容器,但性能上較ArrayList差,因此已經是Java中的遺留容器。
- LinkedList使用雙向鏈表實現存儲(將內存中零散的內存單元通過附加的引用關聯起來,形成一個可以按序號索引的線性結構,這種鏈式存儲方式與數組的連續存儲方式相比,內存的利用率更高),按序號索引數據需要進行前向或后向遍歷,但是插入數據時只需要記錄本項的前后項即可,所以插入速度較快。
- 由于ArrayList和LinkedListed都是非線程安全的,如果遇到多個線程操作同一個容器的場景,則可以通過工具類Collections中的synchronizedList方法將其轉換成線程安全的容器后再使用(這是對裝潢模式的應用,將已有對象傳入另一個類的構造器中創建新的對象來增強實現)。
17. Collection和Collections的區別?
Collection是一個接口,它是Set、List等容器的父接口;Collections是個一個工具類,提供了一系列的靜態方法來輔助容器操作,這些方法包括對容器的搜索、排序、線程安全化等等。
18. TreeMap和TreeSet在排序時如何比較元素?Collections工具類中的sort()方法如何比較元素?
- TreeSet要求存放的對象所屬的類必須實現Comparable接口,該接口提供了比較元素的compareTo()方法,當插入元素時會回調該方法比較元素的大小。TreeMap要求存放的鍵值對映射的鍵必須實現Comparable接口從而根據鍵對元素進行排序。
- Collections工具類的sort方法有兩種重載的形式,第一種要求傳入的待排序容器中存放的對象比較實現Comparable接口以實現元素的比較;第二種不強制性的要求容器中的元素必須可比較,但是要求傳入第二個參數,參數是Comparator接口的子類型(需要重寫compare方法實現元素的比較),相當于一個臨時定義的排序規則,其實就是通過接口注入比較元素大小的算法,也是對回調模式的應用(Java中對函數式編程的支持)。
例子1:
public class Student implements Comparable<Student> {
private String name; // 姓名
private int age; // 年齡
public Student(String name, int age) {
this.name = name;
this.age = age;
}
@Override
public String toString() {
return "Student [name=" + name + ", age=" + age + "]";
}
@Override
public int compareTo(Student o) {
return this.age - o.age; // 比較年齡(年齡的升序)
}
}
例子2:
class Test02 {
public static void main(String[] args) {
List<Student> list = new ArrayList<>(); // Java 7的鉆石語法(構造器后面的尖括號中不需要寫類型)
list.add(new Student("Hao LUO", 33));
list.add(new Student("XJ WANG", 32));
list.add(new Student("Bruce LEE", 60));
list.add(new Student("Bob YANG", 22));
// 通過sort方法的第二個參數傳入一個Comparator接口對象
// 相當于是傳入一個比較對象大小的算法到sort方法中
// 由于Java中沒有函數指針、仿函數、委托這樣的概念
// 因此要將一個算法傳入一個方法中唯一的選擇就是通過接口回調
Collections.sort(list, new Comparator<Student> () {
@Override
public int compare(Student o1, Student o2) {
return o1.getName().compareTo(o2.getName()); // 比較學生姓名
}
});
for(Student stu : list) {
System.out.println(stu);
}
}
}
19. Thread類的sleep()方法和對象的wait()方法都可以讓線程暫停執行,它們有什么區別?
- sleep()方法(休眠)是線程類(Thread)的靜態方法,調用此方法會讓當前線程暫停執行指定的時間,將執行機會(CPU)讓給其他線程,但是對象的鎖依然保持,因此休眠時間結束后會自動恢復
- wait()是Object類的方法,調用對象的wait()方法導致當前線程放棄對象的鎖(線程暫停執行),進入對象的等待池(wait pool),只有調用對象的notify()方法(或notifyAll()方法)時才能喚醒等待池中的線程進入等鎖池(lock pool),如果線程重新獲得對象的鎖就可以進入就緒狀態。
20. 進程和線程區別
- 進程是具有一定獨立功能的程序關于某個數據集合上的一次運行活動,是操作系統進行資源分配和調度的一個獨立單位;
- 線程是進程的一個實體,是CPU調度和分派的基本單位,是比進程更小的能獨立運行的基本單位。
- 線程的劃分尺度小于進程,這使得多線程程序的并發性高;進程在執行時通常擁有獨立的內存單元,而線程之間可以共享內存。使用多線程的編程通常能夠帶來更好的性能和用戶體驗,但是多線程的程序對于其他程序是不友好的,因為它可能占用了更多的CPU資源。當然,也不是線程越多,程序的性能就越好,因為線程之間的調度和切換也會浪費CPU時間。時下很時髦的Node.js就采用了單線程異步I/O的工作模式。
21. sleep()與yield()區別
- sleep()方法給其他線程運行機會時不考慮線程的優先級,因此會給低優先級的線程以運行的機會;yield()方法只會給相同優先級或更高優先級的線程以運行的機會;
- 線程執行sleep()方法后轉入阻塞(blocked)狀態,而執行yield()方法后轉入就緒(ready)狀態;
- sleep()方法聲明拋出InterruptedException,而yield()方法沒有聲明任何異常;
- sleep()方法比yield()方法(跟操作系統CPU調度相關)具有更好的可移植性。
22.啟動一個線程是調用run()還是start()方法
啟動一個線程是調用start()方法,使線程所代表的虛擬處理機處于可運行狀態,這意味著它可以由JVM 調度并執行,這并不意味著線程就會立即運行。run()方法是線程啟動后要進行回調(callback)的方法。
23.線程池
在面向對象編程中,創建和銷毀對象是很費時間的,因為創建一個對象要獲取內存資源或者其它更多資源。在Java中更是如此,虛擬機將試圖跟蹤每一個對象,以便能夠在對象銷毀后進行垃圾回收。所以提高服務程序效率的一個手段就是盡可能減少創建和銷毀對象的次數,特別是一些很耗資源的對象創建和銷毀,這就是”池化資源”技術產生的原因。線程池顧名思義就是事先創建若干個可執行的線程放入一個池(容器)中,需要的時候從池中獲取線程不用自行創建,使用完畢不需要銷毀線程而是放回池中,從而減少創建和銷毀線程對象的開銷。
Java 5+中的Executor接口定義一個執行線程的工具。它的子類型即線程池接口是ExecutorService。要配置一個線程池是比較復雜的,尤其是對于線程池的原理不是很清楚的情況下,因此在工具類Executors面提供了一些靜態工廠方法,生成一些常用的線程池,如下所示:
- newSingleThreadExecutor:創建一個單線程的線程池。這個線程池只有一個線程在工作,也就是相當于單線程串行執行所有任務。如果這個唯一的線程因為異常結束,那么會有一個新的線程來替代它。此線程池保證所有任務的執行順序按照任務的提交順序執行。
- newFixedThreadPool:創建固定大小的線程池。每次提交一個任務就創建一個線程,直到線程達到線程池的最大大小。線程池的大小一旦達到最大值就會保持不變,如果某個線程因為執行異常而結束,那么線程池會補充一個新線程。
- newCachedThreadPool:創建一個可緩存的線程池。如果線程池的大小超過了處理任務所需要的線程,那么就會回收部分空閑(60秒不執行任務)的線程,當任務數增加時,此線程池又可以智能的添加新線程來處理任務。此線程池不會對線程池大小做限制,線程池大小完全依賴于操作系統(或者說JVM)能夠創建的最大線程大小。
- newScheduledThreadPool:創建一個大小無限的線程池。此線程池支持定時以及周期性執行任務的需求。
24.線程狀態轉換

25.簡述synchronized 和java.util.concurrent.locks.Lock的異同?
答:Lock是Java 5以后引入的新的API,和關鍵字synchronized相比主要相同點:Lock 能完成synchronized所實現的所有功能;
主要不同點:
- Lock有比synchronized更精確的線程語義和更好的性能,而且不強制性的要求一定要獲得鎖。
- synchronized會自動釋放鎖,而Lock一定要求程序員手工釋放,并且最好在finally 塊中釋放(這是釋放外部資源的最好的地方)。
26. Statement和PreparedStatement有什么區別?哪個性能更好?
答:與Statement相比,PreparedStatement接口代表預編譯的語句,它主要的優勢在于:
- 可以減少SQL的編譯錯誤并增加SQL的安全性(減少SQL注射攻擊的可能性);
- PreparedStatement中的SQL語句是可以帶參數的,避免了用字符串連接拼接SQL語句的麻煩和不安全;
- 當批量處理SQL或頻繁執行相同的查詢時,PreparedStatement有明顯的性能上的優勢,由于數據庫可以將編譯優化后的SQL語句緩存起來,下次執行相同結構的語句時就會很快(不用再次編譯和生成執行計劃)。
27.反射創建對象?
- 方法1:通過類對象調用newInstance()方法,例如:String.class.newInstance()
- 方法2:通過類對象的getConstructor()或getDeclaredConstructor()方法獲得構造器(Constructor)對象并調用其newInstance()方法創建對象,例如:String.class.getConstructor(String.class).newInstance("Hello");