1,功能:將數據進行離散化
pandas.cut(x,bins,right=True,labels=None,retbins=False,precision=3,include_lowest=False)
???? 參數說明:
? ? ?x???:進行劃分的一維數組
???? bins : 1,整數---將x劃分為多少個等間距的區間
???????? In[1]:pd.cut(np.array([0.2,1.4,2.5,6.2,9.7,2.1]),3,retbins=True)
? ? ? ? Out[1]: ([(0.19, 3.367], (0.19, 3.367], (0.19, 3.367], (3.367,6.533], (6.533,9.7], (0.19, 3.367]] Categories (3, interval[float64]): [(0.19,3.367] < (3.367, 6.533] < (6.533, 9.7]],array([ 0.1905??? ,?3.36666667,? 6.53333333,? 9.7 ]))
? ? ? ? ? ? ? ? 2,序列—將x劃分在指定的序列中,若不在該序列中,則是NaN
???? ???? ?In[2]:pd.cut(np.array([0.2,1.4,2.5,6.2,9.7,2.1]),[1,2,3],retbins=True)
? ? ? ? ? ?Out[2]: ([NaN, (1, 2], (2, 3], NaN, NaN, (2, 3]] Categories(2, interval[int64]): [(1, 2] < (2, 3]], array([1, 2, 3]))
???? right :是否包含右端點
???? labels :是否用標記來代替返回的bins
???????? ?In[3]:pd.cut([1,2,3,4],4,labels=['one','two','three','four'])
???????? ?Out[3]: [one, two, three, four]Categories (4, object): [one
???? precision:精度
???? include_lowest:是否包含左端點
???? 返回值:
???? 如果retbins = False 則返回x中每個值對應的bin的列表,否者則返回x中每個值對應的bin的列表和對應的bins