mxnet分布式1
可能的阻塞原因
啟動分布式的時候一開始經常程序阻塞住,自以為一切都按照官方的操作了,從表面現象看發射機在啟動了launcher.py進程后,shell停住,這個是最讓人頭疼的,這種情況首先確保:
- 每一臺機器上的環境一樣,包括代碼路徑,python環境
- 要啟動的進程是否已經存在,如果已經存在,先殺死它們
- 防火墻是否已經關閉
- 兩臺機器是否能免密ssh了
啟動方式
-
通過官方提供的launcher.py啟動
參考:https://github.com/apache/incubator-mxnet/tree/master/example/image-classification
為了看明白其中的過程,看一種別的啟動方式
首先啟動scheduler,scheduler進程會阻塞等待,再啟動兩個server,每個server都指定了PS的IP地址,最后啟動兩個worker,整個分布式程序開始啟動運行,worker的shell動起來
針對mnist
sch---export DMLC_PS_ROOT_URI=x.x.x.x; export DMLC_ROLE=scheduler; export DMLC_PS_ROOT_PORT=9001; export DMLC_NUM_WORKER=2; export DMLC_NUM_SERVER=2;
cd /path/to;
python train_mnist.py --kv-store dist_sync
ps1---export DMLC_SERVER_ID=0; export DMLC_PS_ROOT_URI=x.x.x.x; export DMLC_ROLE=server; export DMLC_PS_ROOT_PORT=9001; export DMLC_NUM_WORKER=2; export DMLC_NUM_SERVER=2;
cd /path/to;
python train_mnist.py --kv-store dist_sync
ps2---export DMLC_SERVER_ID=1; export DMLC_PS_ROOT_URI=x.x.x.x; export DMLC_ROLE=server; export DMLC_PS_ROOT_PORT=9001; export DMLC_NUM_WORKER=2; export DMLC_NUM_SERVER=2
cd /path/to;
python train_mnist.py --kv-store dist_sync
wk1---export DMLC_WORKER_ID=0; export DMLC_PS_ROOT_URI=x.x.x.x; export DMLC_ROLE=worker; export DMLC_PS_ROOT_PORT=9001; export DMLC_NUM_WORKER=2; export DMLC_NUM_SERVER=2
cd /path/to;
python train_mnist.py --kv-store dist_sync
wk2---export DMLC_WORKER_ID=2; export DMLC_PS_ROOT_URI=x.x.x.x; export DMLC_ROLE=worker; export DMLC_PS_ROOT_PORT=9001; export DMLC_NUM_WORKER=2; export DMLC_NUM_SERVER=2
cd /path/to;
python train_mnist.py --kv-store dist_sync
啟動過程分析
在x.x.x.x/x兩臺機器上做實驗
啟動腳本:
python ../../tools/launch.py -n 2 --launcher ssh -H hosts `which python` train_mnist.py --kv-store=dist_sync
啟動后兩臺機器上的啟動的進程分析
- 發射機
/home/xxx/anaconda2/envs/ps_lite/bin/python train_mnist.py --kv-store=dist_sync
這條命令執行了3次,第一次是parameter server啟動的scheduler進程,由tracker
的pserver = PSTracker(hostIP=hostIP, cmd=pscmd, envs=envs)
代碼啟動,scheduler
進程由PSTtacker的構造函數啟動,另外兩個是由發射機ssh啟動的server和worker進程,以上所有進程啟動都是用異步線程啟動
ssh -o StrictHostKeyChecking=no x.x.x.x -p 22 export LD_LIBRARY_PATH=.::/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/home/xxx/xxx-workspace/cuda-8.0-cudnn-6.0/lib64; export DMLC_ROLE=server; export DMLC_PS_ROOT_PORT=9091; export DMLC_PS_ROOT_URI=x.x.x.x; export DMLC_NUM_SERVER=2; export DMLC_NUM_WORKER=2; cd /path/to/example/image-classification/; `which python` train_mnist.py --kv-store=dist_sync
這個進程起了四次,分別是向兩個worker和兩個server發送ssh進程,IP從hosts文件讀取,PS都是x.x.x.x這臺機器
bash -c export LD_LIBRARY_PATH=.::/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/home/xxx/xxx-workspace/cuda-8.0-cudnn-6.0/lib64; export DMLC_ROLE=server; export DMLC_PS_ROOT_PORT=9092; export DMLC_PS_ROOT_URI=x.x.x.x; export DMLC_NUM_SERVER=2; export DMLC_NUM_WORKER=2; cd /path/to/example/image-classification/; `which python` train_mnist.py --kv-store=dist_sync
這個進程起了2次,接收到發射機發送的兩次請求,分別啟動server進程和worker進程
- worker節點
/home/xxx/anaconda2/envs/ps_lite/bin/python train_mnist.py --kv-store=dist_sync
這條命令執行了2次
bash -c export LD_LIBRARY_PATH=.::/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/home/xxx/xxx-workspace/cuda-8.0-cudnn-6.0/lib64; export DMLC_ROLE=worker; export DMLC_PS_ROOT_PORT=9092; export DMLC_PS_ROOT_URI=x.x.x.x; export DMLC_NUM_SERVER=2; export DMLC_NUM_WORKER=2; cd /path/to/example/image-classification/; `which python` train_mnist.py --kv-store=dist_sync
這個進程啟動了2次, 接收到發射機發送的兩次請求,分別啟動server進程和worker進程
啟動后的參數
Namespace(archives=[], auto_file_cache=True, cluster='ssh', command=['`which', 'python`', 'train_mnist.py', '--kv-store=dist_sync'], env=[], files=[], hdfs_tempdir='/tmp', host_file='hosts', host_ip=None, jobname=None, kube_namespace='default', kube_server_image='mxnet/python', kube_server_template=None, kube_worker_image='mxnet/python', kube_worker_template=None, log_file=None, log_level='INFO', mesos_master=None, num_servers=2, num_workers=2, queue='default', server_cores=1, server_memory='1g', server_memory_mb=1024, sge_log_dir=None, ship_libcxx=None, slurm_server_nodes=None, slurm_worker_nodes=None, sync_dst_dir='None', worker_cores=1, worker_memory='1g', worker_memory_mb=1024, yarn_app_classpath=None, yarn_app_dir='/path/to/tools/../dmlc-core/tracker/dmlc_tracker/../yarn')
上面一堆參數中只有num_workers, num_servers,cluseter,host_file,sync_dst_dir,command是從外部給出,其他的參數從
try:
from dmlc_tracker import opts
except ImportError:
print("Can't load dmlc_tracker package. Perhaps you need to run")
print(" git submodule update --init --recursive")
raise
dmlc_opts = opts.get_opts(args)
中最后一行加載進來, opt.py中定義了很多參數parser
ssh.py->submit(args)->tracker.py:submit()->fun_submit->ssh.py:submit():ssh_submit()
hosts對象包裝了hosts文件的IP地址和對應的端口
在ssh.py的方法ssh_submit()方法中,for語句中依次從hosts文件中拿到IP啟動server和worker
代碼分析
只試過ssh的啟動方式,目前只看到python層的代碼,看到啟動了各自的進程,主要就四個類,launcher調用ssh.py,ssh.py調用tracker.py依次啟動scheduler,server,worker進程