iOS進階專項分析(七)、App Launch之dyld流程分析

先來看一下iOS/Mac OS系統內核架構

iOS:Mac OS系統架構.png

需要注意:dyld是運行在用戶態的進程(下面解釋)。也就是說:App啟動過程從系統內核XNU到內核把控制權交給dyld,這個過程完成了內核態到用戶態的切換

一、dyld初識


什么是dyld

dyld是英文 the dynamic link editor 的簡寫,翻譯過來就是動態鏈接器,是蘋果操作系統的一個重要的組成部分。在iOS/Mac OSX系統中,僅有很少量的進程只需要內核就能完成加載,基本上所有的進程都是動態鏈接的,所以Mach-O鏡像文件中會有很多對外部的庫和符號的引用,但是這些引用并不能直接用,在啟動時還必須要通過這些引用進行內容的填補,這個填補工作就是由動態鏈接器dyld來完成的,也就是符號綁定

dyld啟動時機及位置

動態鏈接器dyld是內核執行內核命令LC_LOAD_DYLINKER加載命令時啟動的,默認使用/usr/lib/dyld文件作為動態鏈接器。

補充:LC_MAIN指的就是程序main函數加載地址,LC_LOAD_DYLIB指向的都是程序依賴庫加載信息,舉個例子LC_LOAD_DYLIB(AFNetworking)指的就是AFNetworking依賴庫的加載地址。

dyld與系統內核關系

dyld是一個用戶態進程,不屬于內核的一部分,單獨由蘋果維護,并且代碼已經開源。也就是說dyld可以理解成一個可插入的組件,可以用第三方進行替換。

傳送門:
dyld開源代碼下載

二、從App啟動的角度進行dyld源碼流程分析


下載dyld最新版源碼dyld-733.6

新建測試工程,斷點設置在在main函數之前,打印調用堆棧信息,發現App在啟動的時候會執行libdyld.dylibstart操作。

斷點.png

然后就進不去了,根據這個線索,我們在源碼的dyldStartup.s文件中找到入口_dyld_start,仔細分析_dyld_start源碼,發現這個文件中按照不同架構分別做了邏輯處理,比如i386x86_64arm64arm

下面筆者摘出arm64架構下的部分的匯編源碼:

#if __arm64__
    .text
    .align 2
    .globl __dyld_start
__dyld_start:
    mov     x28, sp
    and     sp, x28, #~15       // force 16-byte alignment of stack
    
    ...

    // call dyldbootstrap::start(app_mh, argc, argv, dyld_mh, &startGlue)
    bl  __ZN13dyldbootstrap5startEPKN5dyld311MachOLoadedEiPPKcS3_Pm
    mov x16,x0                  // save entry point address in x16
    
    ...

}

找到關鍵部分bl跳轉指令,根據注釋信息,這里會跳轉調用dyld的引導程序dyldbootstrap::start

1、dyld的引導程序dyldbootstrap::start

// call dyldbootstrap::start(app_mh, argc, argv, dyld_mh, &startGlue)
bl  __ZN13dyldbootstrap5startEPKN5dyld311MachOLoadedEiPPKcS3_Pm

搜索 dyldbootstrap 關鍵字,在dyldInitialization.cpp文件中找到定義,并找到方法start,代碼如下:

//
//  This is code to bootstrap dyld.  This work in normally done for a program by dyld and crt.
//  In dyld we have to do this manually.
//
uintptr_t start(const dyld3::MachOLoaded* appsMachHeader, int argc, const char* argv[],
                const dyld3::MachOLoaded* dyldsMachHeader, uintptr_t* startGlue)
{
   ...
   
   rebaseDyld(dyldsMachHeader);

    const char** envp = &argv[argc+1];
    const char** apple = envp;
    while(*apple != NULL) { ++apple; }
    ++apple;

    __guard_setup(apple);

    uintptr_t appsSlide = appsMachHeader->getSlide();
    return dyld::_main((macho_header*)appsMachHeader, appsSlide, argc, argv, envp, apple, startGlue);
}

根據源碼,總結dyldbootstrap::start主要的操作如下:

  1. 先調用rebaseDyld() dyld重定位
  2. 然后__guard_setup 棧溢出保護
  3. 最后調用dyld::_main 進入dyld_main函數

為什么要rebaseDyld()重定位呢?

這里要提到兩種蘋果用來保證應用安全的技術:ASLRCodeSign

ASLR:是Address Space Layout Randomization(地址空間布局隨機化)的簡稱。App在被啟動的時候,程序會被映射到邏輯地址空間,這個邏輯地址空間有一個起始地址,ASLR技術讓這個起始地址是隨機的。這個地址如果是固定的,黑客很容易就用起始地址+函數偏移地址找到對應的函數地址。

Code Sign:就是蘋果代碼加密簽名機制,但是在Code Sign操作的時候,加密的哈希不是針對整個文件,而是針對每一個Page的。這個就保證了dyld在加載的時候,可以對每個page進行獨立的驗證。

正是因為ASLR使得地址隨機化,導致起始地址不固定,以及Code Sign,導致不能直接修改Image。所以需要rebase來處理符號引用問題,Rebase的時候只需要通過增加對應偏移量就行了。Rebase主要的作用就是修正內部(指向當前Mach-O文件)的指針指向,也就是基地址復位功能。

下面就是rebaseDyld()的源碼:

//
// On disk, all pointers in dyld's DATA segment are chained together.
// They need to be fixed up to be real pointers to run.

static void rebaseDyld(const dyld3::MachOLoaded* dyldMH)
{
    // walk all fixups chains and rebase dyld
    遍歷所有固定的 chains 然后 rebase dyld
    const dyld3::MachOAnalyzer* ma = (dyld3::MachOAnalyzer*)dyldMH;
    assert(ma->hasChainedFixups());
    uintptr_t slide = (long)ma; // all fixup chain based images have a base address of zero, so slide == load address
    所有基于修正鏈的映像的基地址為零,因此slide == 加載地址
    __block Diagnostics diag;
    ma->withChainStarts(diag, 0, ^(const dyld_chained_starts_in_image* starts) {
        ma->fixupAllChainedFixups(diag, starts, slide, dyld3::Array<const void*>(), nullptr);
    });
    diag.assertNoError();

    // now that rebasing done, initialize mach/syscall layer
    mach_init();

    // <rdar://47805386> mark __DATA_CONST segment in dyld as read-only (once fixups are done)
    ma->forEachSegment(^(const dyld3::MachOFile::SegmentInfo& info, bool& stop) {
        if ( info.readOnlyData ) {
            ::mprotect(((uint8_t*)(dyldMH))+info.vmAddr, (size_t)info.vmSize, VM_PROT_READ);
        }
    });
}

接下來進入dyld::_main()

2、dyld的主程序dyld::_main分析

dyldInitialization.cpp文件中找到dyld::_main()的實現部分,大概六七百行,筆者把非關鍵的代碼省略掉,關鍵部分及翻譯部分貼出來如下:

uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide, 
        int argc, const char* argv[], const char* envp[], const char* apple[], 
        uintptr_t* startGlue)
{
    //第1步:初始化程序運行環境++++++++++++++++++++++++++++++++
    //初始化運行環境配置以及拿到Mach-O頭文件    (macho_header里面包含整個Mach-O文件信息其中包括所有鏈入的動態庫信息)
    
    uint8_t mainExecutableCDHashBuffer[20];
    const uint8_t* mainExecutableCDHash = nullptr;
    if ( hexToBytes(_simple_getenv(apple, "executable_cdhash"), 40, mainExecutableCDHashBuffer) )
        mainExecutableCDHash = mainExecutableCDHashBuffer;

    notifyKernelAboutImage(mainExecutableMH, _simple_getenv(apple, "executable_file"));

    uintptr_t result = 0;
    
    //獲取主程序的macho_header結構以及主程序的slide偏移值
    
    sMainExecutableMachHeader = mainExecutableMH;
    sMainExecutableSlide = mainExecutableSlide;
    ......
    CRSetCrashLogMessage("dyld: launch started");
    
    //設置上下文信息
    setContext(mainExecutableMH, argc, argv, envp, apple);

    //獲取主程序路徑
    // Pickup the pointer to the exec path.
    sExecPath = _simple_getenv(apple, "executable_path");

    if (!sExecPath) sExecPath = apple[0];

    if ( sExecPath[0] != '/' ) {
        // have relative path, use cwd to make absolute
        char cwdbuff[MAXPATHLEN];
        if ( getcwd(cwdbuff, MAXPATHLEN) != NULL ) {
            // maybe use static buffer to avoid calling malloc so early...
            char* s = new char[strlen(cwdbuff) + strlen(sExecPath) + 2];
            strcpy(s, cwdbuff);
            strcat(s, "/");
            strcat(s, sExecPath);
            sExecPath = s;
        }
    }

   //獲取進程名稱
    // Remember short name of process for later logging
    sExecShortName = ::strrchr(sExecPath, '/');
    if ( sExecShortName != NULL )
        ++sExecShortName;
    else
        sExecShortName = sExecPath;

    //配置進程受限模式
    configureProcessRestrictions(mainExecutableMH, envp);

    //檢測環境變量
    checkEnvironmentVariables(envp);
    defaultUninitializedFallbackPaths(envp);

    //判斷是否設置了sEnv.DYLD_PRINT_OPTS以及sEnv.DYLD_PRINT_ENV,分別打印argv參數和envp環境變量
    if ( sEnv.DYLD_PRINT_OPTS )
        printOptions(argv);
    if ( sEnv.DYLD_PRINT_ENV ) 
        printEnvironmentVariables(envp);

    //獲取當前程序架構
    getHostInfo(mainExecutableMH, mainExecutableSlide);


    // load shared cache
    //第2步、加載共享緩存 shared cache
++++++++++++++++++++++++++++++++
    //檢查共享緩存是否開啟,iOS必須開啟!!!!!!
    checkSharedRegionDisable((dyld3::MachOLoaded*)mainExecutableMH, mainExecutableSlide);
    if ( gLinkContext.sharedRegionMode != ImageLoader::kDontUseSharedRegion ) {
#if TARGET_OS_SIMULATOR
        if ( sSharedCacheOverrideDir)
            mapSharedCache();
#else
        mapSharedCache();
#endif
    }

   ......
    
    try {
        // add dyld itself to UUID list
        addDyldImageToUUIDList();
        
        // 第3步:實例化主程序,并賦值給ImageLoader::LinkContext
+++++++++++++++++++++
        
        sMainExecutable = instantiateFromLoadedImage(mainExecutableMH, mainExecutableSlide, sExecPath);
        gLinkContext.mainExecutable = sMainExecutable;
        gLinkContext.mainExecutableCodeSigned = hasCodeSignatureLoadCommand(mainExecutableMH);

    ......

    #if SUPPORT_VERSIONED_PATHS
        checkVersionedPaths();
    #endif
        // dyld_all_image_infos image list does not contain dyld
        // add it as dyldPath field in dyld_all_image_infos
        // for simulator, dyld_sim is in image list, need host dyld added
        
#if TARGET_OS_SIMULATOR
        // get path of host dyld from table of syscall vectors in host dyld
        void* addressInDyld = gSyscallHelpers;
#else
        // get path of dyld itself
        void*  addressInDyld = (void*)&__dso_handle;
#endif
        char dyldPathBuffer[MAXPATHLEN+1];
        int len = proc_regionfilename(getpid(), (uint64_t)(long)addressInDyld, dyldPathBuffer, MAXPATHLEN);
        if ( len > 0 ) {
            dyldPathBuffer[len] = '\0'; // proc_regionfilename() does not zero terminate returned string
            if ( strcmp(dyldPathBuffer, gProcessInfo->dyldPath) != 0 )
                gProcessInfo->dyldPath = strdup(dyldPathBuffer);
        }

       //第4步 加載插入的動態庫++++++++++++++++++++
       
        // load any inserted libraries
        if  ( sEnv.DYLD_INSERT_LIBRARIES != NULL ) {
            for (const char* const* lib = sEnv.DYLD_INSERT_LIBRARIES; *lib != NULL; ++lib) 
                loadInsertedDylib(*lib);
        }
        
        // record count of inserted libraries so that a flat search will look at 
        // inserted libraries, then main, then others.
        sInsertedDylibCount = sAllImages.size()-1;

        // link main executable
        //第5步:鏈接主程序++++++++++++++
        
        gLinkContext.linkingMainExecutable = true;
#if SUPPORT_ACCELERATE_TABLES
        if ( mainExcutableAlreadyRebased ) {
            // previous link() on main executable has already adjusted its internal pointers for ASLR
            // work around that by rebasing by inverse amount
            sMainExecutable->rebase(gLinkContext, -mainExecutableSlide);
        }
#endif
        link(sMainExecutable, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
        sMainExecutable->setNeverUnloadRecursive();
        if ( sMainExecutable->forceFlat() ) {
            gLinkContext.bindFlat = true;
            gLinkContext.prebindUsage = ImageLoader::kUseNoPrebinding;
        }

    //第6步、鏈接插入的動態庫++++++++
    
        // link any inserted libraries
        // do this after linking main executable so that any dylibs pulled in by inserted 
        // dylibs (e.g. libSystem) will not be in front of dylibs the program uses
        if ( sInsertedDylibCount > 0 ) {
            for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                ImageLoader* image = sAllImages[i+1];
                link(image, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
                image->setNeverUnloadRecursive();
            }
            // only INSERTED libraries can interpose
            // register interposing info after all inserted libraries are bound so chaining works
            for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                ImageLoader* image = sAllImages[i+1];
                image->registerInterposing(gLinkContext);
            }
        }

        // <rdar://problem/19315404> dyld should support interposition even without DYLD_INSERT_LIBRARIES
        for (long i=sInsertedDylibCount+1; i < sAllImages.size(); ++i) {
            ImageLoader* image = sAllImages[i];
            if ( image->inSharedCache() )
                continue;
            image->registerInterposing(gLinkContext);
        }
    
        ......
    
        // apply interposing to initial set of images
        for(int i=0; i < sImageRoots.size(); ++i) {
            sImageRoots[i]->applyInterposing(gLinkContext);
        }
        ImageLoader::applyInterposingToDyldCache(gLinkContext);

        // Bind and notify for the main executable now that interposing has been registered
        uint64_t bindMainExecutableStartTime = mach_absolute_time();
        sMainExecutable->recursiveBindWithAccounting(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
        uint64_t bindMainExecutableEndTime = mach_absolute_time();
        ImageLoaderMachO::fgTotalBindTime += bindMainExecutableEndTime - bindMainExecutableStartTime;
        gLinkContext.notifyBatch(dyld_image_state_bound, false);

        // Bind and notify for the inserted images now interposing has been registered
        if ( sInsertedDylibCount > 0 ) {
            for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
                ImageLoader* image = sAllImages[i+1];
                image->recursiveBind(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
            }
        }
        
        //第7步、在鏈接所有插入的image后,執行弱綁定++++++++++++++++++++++++++++++
        
        // <rdar://problem/12186933> do weak binding only after all inserted images linked
        sMainExecutable->weakBind(gLinkContext);
        gLinkContext.linkingMainExecutable = false;

        sMainExecutable->recursiveMakeDataReadOnly(gLinkContext);

        CRSetCrashLogMessage("dyld: launch, running initializers");
    #if SUPPORT_OLD_CRT_INITIALIZATION
        // Old way is to run initializers via a callback from crt1.o
        if ( ! gRunInitializersOldWay ) 
            initializeMainExecutable(); 
    #else
    
    //第8步:執行所有的初始化方法+++++++++++++++++++++
    
        // run all initializers
        initializeMainExecutable(); 
    #endif

        // notify any montoring proccesses that this process is about to enter main()
        notifyMonitoringDyldMain();
        if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
            dyld3::kdebug_trace_dyld_duration_end(launchTraceID, DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, 0, 0, 2);
        }
        ARIADNEDBG_CODE(220, 1);

#if __MAC_OS_X_VERSION_MIN_REQUIRED
        if ( gLinkContext.driverKit ) {
            result = (uintptr_t)sEntryOveride;
            if ( result == 0 )
                halt("no entry point registered");
            *startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
        }
        else
#endif
        {
        
        //第9步:查找主程序的入口點并返回
        
            // find entry point for main executable
            result = (uintptr_t)sMainExecutable->getEntryFromLC_MAIN();
            
            if ( result != 0 ) {
                // main executable uses LC_MAIN, we need to use helper in libdyld to call into main()
                if ( (gLibSystemHelpers != NULL) && (gLibSystemHelpers->version >= 9) )
                    *startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
                else
                    halt("libdyld.dylib support not present for LC_MAIN");
            }
            else {
                // main executable uses LC_UNIXTHREAD, dyld needs to let "start" in program set up for main()
                result = (uintptr_t)sMainExecutable->getEntryFromLC_UNIXTHREAD();
                *startGlue = 0;
            }
        }
#if __has_feature(ptrauth_calls)
        // start() calls the result pointer as a function pointer so we need to sign it.
        result = (uintptr_t)__builtin_ptrauth_sign_unauthenticated((void*)result, 0, 0);
#endif
    }
    catch(const char* message) {
        syncAllImages();
        halt(message);
    }
    catch(...) {
        dyld::log("dyld: launch failed\n");
    }

    ......
    
    return result;
}


總結dyld::_main主要做了以下操作(就不一一分析了):

  1. 主程序運行環境初始化及配置,拿到Mach-O頭文件 (macho_header里面包含整個Mach-O文件信息其中包括所有鏈入的動態庫信息)
  2. 加載共享緩存 shared cache
  3. 實例化主程序,并賦值給ImageLoader::LinkContext
  4. 加載所有插入的動態庫,將可執行文件以及相應的依賴庫與插入庫加載進內存生成對應的ImageLoader類的image(鏡像文件)對象
  5. 鏈接主程序(必須先鏈接主程序后才能插入)
  6. 鏈接所有的動態庫ImageLoader的image(鏡像文件)對象,并注冊插入的信息,方便后續進行綁定
  7. 在鏈接完所有插入的動態庫鏡像文件之后執行弱綁定
  8. 執行所有動態庫image的初始化方法initializeMainExecutable
  9. 查找主程序的入口點LC_MAIN并返回result結果,結束整個_dyld_start流程,進入我們App的main()函數!

這里解釋一下共享緩存機制:

dyld加載時,為了優化程序啟動,在dyld::_main中啟用了共享緩存(shared cache)技術。共享緩存會在進程啟動時被dyld映射到內存中,之后,當任何Mach-O映像加載時,dyld首先會檢查該Mach-O映像與所需的動態庫是否在共享緩存中,如果存在,則直接將它在共享內存中的內存地址映射到進程的內存地址空間。在程序依賴的系統動態庫很多的情況下,這種做法對程序啟動性能會有明顯提升。

接下來分析一下_main的第8步,initializeMainExecutable()

在源碼中搜索initializeMainExecutable,然后在dyld2.cpp文件中找到實現部分:

void initializeMainExecutable()
{
    ......

    對每一個插入進來的dylib調用runInitializers方法進行初始化
    
    ImageLoader::InitializerTimingList initializerTimes[allImagesCount()];
    initializerTimes[0].count = 0;
    const size_t rootCount = sImageRoots.size();
    if ( rootCount > 1 ) {
        for(size_t i=1; i < rootCount; ++i) {
            sImageRoots[i]->runInitializers(gLinkContext, initializerTimes[0]);
        }
    }
    
    
    對主程序調用runInitializers方法初始化
    
    sMainExecutable->runInitializers(gLinkContext, initializerTimes[0]);
    
    // register cxa_atexit() handler to run static terminators in all loaded images when this process exits
    注冊cxa_atexit()回調以在此進程退出時在所有加載的圖像中運行靜態終止符
    
    ......
    
}


總結initializeMainExecutable函數中間做了什么:

  1. 對每一個插入進來的dylib調用runInitializers方法進行初始化
  2. 對主程序調用runInitializers方法初始化

注意!這兩步都涉及到了關鍵的函數 runInitializers(),我們進入它的源碼,發現內部調用了processInitializers,繼續進入,發現processInitializers內部又調用了recursiveInitialization下面是recursiveInitialization的實現:

void ImageLoader::recursiveInitialization(const LinkContext& context, mach_port_t this_thread, const char* pathToInitialize,
                                          InitializerTimingList& timingInfo, UninitedUpwards& uninitUps)
{
    recursive_lock lock_info(this_thread);
    recursiveSpinLock(lock_info);

    if ( fState < dyld_image_state_dependents_initialized-1 ) {
        uint8_t oldState = fState;
        // break cycles
        fState = dyld_image_state_dependents_initialized-1;
        try {
            // initialize lower level libraries first
            for(unsigned int i=0; i < libraryCount(); ++i) {
                ImageLoader* dependentImage = libImage(i);
                if ( dependentImage != NULL ) {
                    // don't try to initialize stuff "above" me yet
                    if ( libIsUpward(i) ) {
                        uninitUps.imagesAndPaths[uninitUps.count] = { dependentImage, libPath(i) };
                        uninitUps.count++;
                    }
                    else if ( dependentImage->fDepth >= fDepth ) {
                        dependentImage->recursiveInitialization(context, this_thread, libPath(i), timingInfo, uninitUps);
                    }
                }
            }
            
            // record termination order
            if ( this->needsTermination() )
                context.terminationRecorder(this);

            // let objc know we are about to initialize this image
            uint64_t t1 = mach_absolute_time();
            fState = dyld_image_state_dependents_initialized;
            oldState = fState;
            context.notifySingle(dyld_image_state_dependents_initialized, this, &timingInfo);
            
            // initialize this image
            bool hasInitializers = this->doInitialization(context);

            // let anyone know we finished initializing this image
            fState = dyld_image_state_initialized;
            oldState = fState;
            context.notifySingle(dyld_image_state_initialized, this, NULL);
            
            if ( hasInitializers ) {
                uint64_t t2 = mach_absolute_time();
                timingInfo.addTime(this->getShortName(), t2-t1);
            }
        }
        catch (const char* msg) {
            // this image is not initialized
            fState = oldState;
            recursiveSpinUnLock();
            throw;
        }
    }
    
    recursiveSpinUnLock();
}


recursiveInitialization的實現中發現關鍵代碼notifySingle

context.notifySingle(dyld_image_state_dependents_initialized, this, &timingInfo);

繼續深入,在dyld2.cpp文件中找到實現

static void notifySingle(dyld_image_states state, const ImageLoader* image, ImageLoader::InitializerTimingList* timingInfo)
{
    
    ...
    
    if ( (state == dyld_image_state_dependents_initialized) && (sNotifyObjCInit != NULL) && image->notifyObjC() ) {
        uint64_t t0 = mach_absolute_time();
        dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
        (*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
        uint64_t t1 = mach_absolute_time();
        uint64_t t2 = mach_absolute_time();
        uint64_t timeInObjC = t1-t0;
        uint64_t emptyTime = (t2-t1)*100;
        if ( (timeInObjC > emptyTime) && (timingInfo != NULL) ) {
            timingInfo->addTime(image->getShortName(), timeInObjC);
        }
    }
    
    ...


找到一個關鍵的函數指針* sNotifyObjCInit, 我們來看看這個指針是用來干嘛的, 在當前文件下,搜索,找到sNotifyObjCInit賦值的地方

void registerObjCNotifiers(_dyld_objc_notify_mapped mapped, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmapped)
{
    // record functions to call
    sNotifyObjCMapped   = mapped;
    sNotifyObjCInit     = init;
    sNotifyObjCUnmapped = unmapped;

    ...
}

全局搜索,看看registerObjCNotifiers這個方法會被誰調用,找到調用的地方_dyld_objc_notify_register函數

void _dyld_objc_notify_register(_dyld_objc_notify_mapped    mapped,
                                _dyld_objc_notify_init      init,
                                _dyld_objc_notify_unmapped  unmapped)
{
    dyld::registerObjCNotifiers(mapped, init, unmapped);
}

繼續搜索,發現找不到_dyld_objc_notify_register方法的調用者,那么問題來了:

_dyld_objc_notify_register在啥時候調用了呢?

接下來我們回到測試工程,打符號斷點如下:

斷點調試.png

運行發現:

步驟分析.png

首先根據調用堆棧信息,我們能看出來_dyld_objc_notify_register_objc_init進行調用的。而_objc_init函數則是Runtime的入口函數!

Objc源碼下載地址

打開Objc源碼,搜索_objc_init,列出_objc_init()實現的源碼部分:

/***********************************************************************
* _objc_init
* Bootstrap initialization. Registers our image notifier with dyld.
* Called by libSystem BEFORE library initialization time
**********************************************************************/

void _objc_init(void)
{
    static bool initialized = false;
    if (initialized) return;
    initialized = true;
    
    // fixme defer initialization until an objc-using image is found?
    environ_init();
    tls_init();
    static_init();
    lock_init();
    exception_init();
    
    //注冊回調函數
    _dyld_objc_notify_register(&map_images, load_images, unmap_image);
}

在最底部發現了我們要找的_dyld_objc_notify_register()!接下來重點看一下這個函數的注釋部分

* _objc_init
* Bootstrap initialization. Registers our image notifier with dyld. 
* //引導程序初始化。 用dyld注冊我們的image通知程序。
* Called by libSystem BEFORE library initialization time
* //在庫初始化之前由libSystem調用!!!!!
* 

注釋的意思就是說這個函數_objc_init的調用時機是在其他動態庫加載之前由libSystem系統庫先調用的。

那么到現在就很明確了,其實在dyld::_main主程序的第8步,初始化所有動態庫及主程序的時候之前,就先注冊了load_images的回調,之后在Runtime調用load_images加載完所有load方法之后,就會回調到dyld::_maininitializeMainExecutable()內部執行回調。

我們來通過斷點驗證一下:

給我們的測試工程加個自定義load方法,斷點截圖如下:

斷點調試.png

三、App啟動之dyld流程圖總結如下:

dyld流程.png

喜歡的可以給個贊哦~

溪浣雙鯉的技術摸爬滾打之路

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。