sc-RAN-seq 數據分析||Seurat新版教程: Integrating datasets to learn cell-type specific responses

如果只是做單個樣本的sc-RNA-seq數據分析,并不能體會到Seurat的強大,因為Seurat天生為整合而生。

本教程展示的是兩個pbmc數據(受刺激組和對照組)整合分析策略,執行整合分析,以便識別常見細胞類型以及比較分析。雖然本例只展示了兩個數據集,但是本方法已經能夠處理多個數據集了。

整個分析的目的:

  • 識別兩個數據集中都存在的細胞類型
  • 在對照組和受刺激組均存在的細胞類型標記(cell type markers)
  • 比較數據集,找出對刺激有反應的特殊細胞類型(cell-type)
數據準備

我已經下載好數據了,但是:

遇到的第一個問題就是,數據太大在windows上Rstudio連數據都讀不了。誰叫我是服務器的男人呢,Windows讀不了沒關系啊,我到服務器上操作,生成rds在讀到Rstudio里面。然后就遇到

 scRNAseq.integrated <- RunUMAP(object = scRNAseq.integrated, reduction = "pca", dims = 1:30)
Error in RunUMAP.default(object = data.use, assay = assay, n.neighbors = n.neighbors,  : 
  Cannot find UMAP, please install through pip (e.g. pip install umap-learn).

我明明已經裝了umap-learn了呀,而且本地跑RunUMAP沒問題,投遞上去就不行。Google了半天,原來是conda的Python與R之間的調度不行,于是

library(reticulate)
use_python("pathto/personal_dir/zhouyunlai/software/conda/envs/scRNA/bin/python")

可以了。

library(Seurat)
library(cowplot)
ctrl.data <- read.table(file = "../data/immune_control_expression_matrix.txt.gz", sep = "\t")
stim.data <- read.table(file = "../data/immune_stimulated_expression_matrix.txt.gz", sep = "\t")

# Set up control object
ctrl <- CreateSeuratObject(counts = ctrl.data, project = "IMMUNE_CTRL", min.cells = 5)
ctrl$stim <- "CTRL"
ctrl <- subset(ctrl, subset = nFeature_RNA > 500)
ctrl <- NormalizeData(ctrl, verbose = FALSE)
ctrl <- FindVariableFeatures(ctrl, selection.method = "vst", nfeatures = 2000)

# Set up stimulated object
stim <- CreateSeuratObject(counts = stim.data, project = "IMMUNE_STIM", min.cells = 5)
stim$stim <- "STIM"
stim <- subset(stim, subset = nFeature_RNA > 500)
stim <- NormalizeData(stim, verbose = FALSE)
stim <- FindVariableFeatures(stim, selection.method = "vst", nfeatures = 2000)

在針對SeuratV3 的文章Comprehensive integration of single cell data中Anchors 是十分核心的概念。翻譯成漢語叫做也就是基于CCA的一種數據比對(alignment)的方法。所以這兩個函數亦需要看一下,以這樣的方式來找到兩個以致多個數據集的共有結構,這不是代替了之前的函數RunCCA()的應用場景了嗎?

##Perform integration

?FindIntegrationAnchors
?IntegrateData
immune.anchors <- FindIntegrationAnchors(object.list = list(ctrl, stim), dims = 1:20)
immune.combined <- IntegrateData(anchorset = immune.anchors, dims = 1:20)

整合完之后,下面的操作就比較熟悉了,和單樣本的思路一樣。

#Perform an integrated analysis

DefaultAssay(immune.combined) <- "integrated"

# Run the standard workflow for visualization and clustering
immune.combined <- ScaleData(immune.combined, verbose = FALSE)
immune.combined <- RunPCA(immune.combined, npcs = 30, verbose = FALSE)
# t-SNE and Clustering
immune.combined <- RunUMAP(immune.combined, reduction = "pca", dims = 1:20)
immune.combined <- FindNeighbors(immune.combined, reduction = "pca", dims = 1:20)
immune.combined <- FindClusters(immune.combined, resolution = 0.5)

以上,都是我在服務上跑的,所以我要把他們讀進來:

immune.combined<-readRDS("D:\\Users\\Administrator\\Desktop\\RStudio\\single_cell\\seurat_files_nbt\\seurat_files_nbt\\immune.combined_tutorial.rds")

> immune.combined
An object of class Seurat 
16053 features across 13999 samples within 2 assays 
Active assay: integrated (2000 features)
 1 other assay present: RNA
 2 dimensional reductions calculated: pca, umap

# Visualization
p1 <- DimPlot(immune.combined, reduction = "umap", group.by = "stim")
p2 <- DimPlot(immune.combined, reduction = "umap", label = TRUE)
plot_grid(p1, p2)

可以用split.by 參數來分別展示兩個數據:

DimPlot(immune.combined, reduction = "umap", split.by = "stim")
Identify conserved cell type markers

所謂保守的和高變的是對應的,也可以理解為兩個數據集中一致的markers.FindConservedMarkers()函數對兩個數據集執行差異檢驗,并使用MetaDE R包中的meta分析方法組合p值。例如,我們可以計算出在cluster 6 (NK細胞)中,無論刺激條件如何,都是保守標記的基因。但凡遇到差異分析的部分都會比較耗時。

#Identify conserved cell type markers 

? FindConservedMarkers

DefaultAssay(immune.combined) <- "RNA"
nk.markers <- FindConservedMarkers(immune.combined, ident.1 = 7, grouping.var = "stim", verbose = FALSE)
head(nk.markers)

           CTRL_p_val CTRL_avg_logFC CTRL_pct.1 CTRL_pct.2 CTRL_p_val_adj    STIM_p_val STIM_avg_logFC STIM_pct.1 STIM_pct.2 STIM_p_val_adj      max_pval minimump_p_val
GNLY            0       4.186117      0.943      0.046              0  0.000000e+00       4.033650      0.955      0.061   0.000000e+00  0.000000e+00              0
NKG7            0       3.164712      0.953      0.085              0  0.000000e+00       2.914724      0.952      0.082   0.000000e+00  0.000000e+00              0
GZMB            0       2.915692      0.839      0.044              0  0.000000e+00       3.142391      0.898      0.061   0.000000e+00  0.000000e+00              0
CLIC3           0       2.407695      0.601      0.024              0  0.000000e+00       2.470769      0.629      0.031   0.000000e+00  0.000000e+00              0
FGFBP2          0       2.241968      0.500      0.021              0 9.524349e-156       1.483922      0.259      0.016  1.338457e-151 9.524349e-156              0
CTSW            0       2.088278      0.537      0.030              0  0.000000e+00       2.196390      0.604      0.035   0.000000e+00  0.000000e+00              0


FeaturePlot(immune.combined, features = c("CD3D", "SELL", "CREM", "CD8A", "GNLY", "CD79A", "FCGR3A", 
                                          "CCL2", "PPBP"), min.cutoff = "q9")
immune.combined <- RenameIdents(immune.combined, `0` = "CD14 Mono", `1` = "CD4 Naive T", `2` = "CD4 Memory T", 
                                `3` = "CD16 Mono", `4` = "B", `5` = "CD8 T", `6` = "T activated", `7` = "NK", `8` = "DC", `9` = "B Activated", 
                                `10` = "Mk", `11` = "pDC", `12` = "Eryth", `13` = "Mono/Mk Doublets")

DimPlot(immune.combined, label = TRUE)

Idents(immune.combined) <- factor(Idents(immune.combined), levels = c("Mono/Mk Doublets", "pDC", 
                                                                      "Eryth", "Mk", "DC", "CD14 Mono", "CD16 Mono", "B Activated", "B", "CD8 T", "NK", "T activated", 
                                                                      "CD4 Naive T", "CD4 Memory T"))
markers.to.plot <- c("CD3D", "CREM", "HSPH1", "SELL", "GIMAP5", "CACYBP", "GNLY", "NKG7", "CCL5", 
                     "CD8A", "MS4A1", "CD79A", "MIR155HG", "NME1", "FCGR3A", "VMO1", "CCL2", "S100A9", "HLA-DQA1", 
                     "GPR183", "PPBP", "GNG11", "HBA2", "HBB", "TSPAN13", "IL3RA", "IGJ")
DotPlot(immune.combined, features = rev(markers.to.plot), cols = c("blue", "red"), dot.scale = 8, 
        split.by = "stim") + RotatedAxis()

差異基因

在這里,我們取受刺激和受控制的原始T細胞和CD14單核細胞群的平均表達量,并生成散點圖,突出顯示對干擾素刺激有顯著反應的基因。

#Identify differential expressed genes across conditions

t.cells <- subset(immune.combined, idents = "CD4 Naive T")
Idents(t.cells) <- "stim"
avg.t.cells <- log1p(AverageExpression(t.cells, verbose = FALSE)$RNA)
avg.t.cells$gene <- rownames(avg.t.cells)

cd14.mono <- subset(immune.combined, idents = "CD14 Mono")
Idents(cd14.mono) <- "stim"
avg.cd14.mono <- log1p(AverageExpression(cd14.mono, verbose = FALSE)$RNA)
avg.cd14.mono$gene <- rownames(avg.cd14.mono)

genes.to.label = c("ISG15", "LY6E", "IFI6", "ISG20", "MX1", "IFIT2", "IFIT1", "CXCL10", "CCL8")
p1 <- ggplot(avg.t.cells, aes(CTRL, STIM)) + geom_point() + ggtitle("CD4 Naive T Cells")
p1 <- LabelPoints(plot = p1, points = genes.to.label, repel = TRUE)
p2 <- ggplot(avg.cd14.mono, aes(CTRL, STIM)) + geom_point() + ggtitle("CD14 Monocytes")
p2 <- LabelPoints(plot = p2, points = genes.to.label, repel = TRUE)
plot_grid(p1, p2)

我們來用FindMarkers()看看這些基因是不是marker基因。

immune.combined$celltype.stim <- paste(Idents(immune.combined), immune.combined$stim, sep = "_")
immune.combined$celltype <- Idents(immune.combined)
Idents(immune.combined) <- "celltype.stim"
b.interferon.response <- FindMarkers(immune.combined, ident.1 = "B_STIM", ident.2 = "B_CTRL", verbose = FALSE)
head(b.interferon.response, n = 15)

                p_val avg_logFC pct.1 pct.2     p_val_adj
ISG15   8.611499e-155 3.1934171 0.998 0.236 1.210174e-150
IFIT3   1.319470e-150 3.1195144 0.965 0.053 1.854251e-146
IFI6    4.716672e-148 2.9264004 0.964 0.078 6.628339e-144
ISG20   1.061563e-145 2.0390802 1.000 0.664 1.491814e-141
IFIT1   1.830963e-136 2.8706318 0.909 0.030 2.573053e-132
MX1     1.775606e-120 2.2540787 0.909 0.118 2.495259e-116
LY6E    2.824749e-116 2.1460522 0.896 0.153 3.969620e-112
TNFSF10 4.227184e-109 2.6372382 0.785 0.020 5.940461e-105
IFIT2   4.627440e-106 2.5102230 0.789 0.038 6.502941e-102
B2M      1.344345e-94 0.4193618 1.000 1.000  1.889208e-90
PLSCR1   5.170871e-94 1.9769476 0.794 0.113  7.266624e-90
IRF7     1.451494e-92 1.7994058 0.838 0.190  2.039785e-88
CXCL10   6.201621e-84 3.6906104 0.650 0.010  8.715138e-80
UBE2L6   1.324818e-81 1.4879509 0.854 0.301  1.861767e-77
PSMB9    1.098134e-76 1.1378896 0.940 0.571  1.543208e-72

這里構造數據的過程值得玩味,然后繪制兩樣本的小提琴圖,那么問題來了:兩個以上數據集的小提琴圖要如何繪制呢?

FeaturePlot(immune.combined, features = c("CD3D", "GNLY", "IFI6"), split.by = "stim", max.cutoff = 3, 
            cols = c("grey", "red"))
plots <- VlnPlot(immune.combined, features = c("LYZ", "ISG15", "CXCL10"), split.by = "stim", group.by = "celltype", 
                 pt.size = 0, combine = FALSE)
CombinePlots(plots = plots, ncol = 1)




Integrating stimulated vs. control PBMC datasets to learn cell-type specific responses
https://github.com/satijalab/seurat/issues/1020

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容