什么是生成器?
通過列表生成式,我們可以直接創建一個列表。但是,受到內存限制,列表容量肯定是有限的。而且,創建一個包含100萬個元素的列表,不僅占用很大的存儲空間,如果我們僅僅需要訪問前面幾個元素,那后面絕大多數元素占用的空間都白白浪費了。所以,如果列表元素可以按照某種算法推算出來,那我們是否可以在循環的過程中不斷推算出后續的元素呢?這樣就不必創建完整的list,從而節省大量的空間。在Python中,這種一邊循環一邊計算的機制,稱為生成器:generator。
帶有 yield 的函數在 Python 中被稱之為 generator(生成器),幾個例子說明下(還是用生成斐波那契數列說明)
生成器(yield)既可以保持代碼的簡潔性,又可以保持代碼的效果
def fab(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
執行
>>> for n in fab(5):
print n
1
1
2
3
5
簡單地講,yield 的作用就是把一個函數變成一個 generator,帶有 yield 的函數不再是一個普通函數,Python 解釋器會將其視為一個 generator,調用 fab(5) 不會執行 fab 函數,而是返回一個 iterable 對象!在 for 循環執行時,每次循環都會執行 fab 函數內部的代碼,執行到 yield b 時,fab 函數就返回一個迭代值,下次迭代時,代碼從 yield b 的下一條語句繼續執行,而函數的本地變量看起來和上次中斷執行前是完全一樣的,于是函數繼續執行,直到再次遇到 yield。看起來就好像一個函數在正常執行的過程中被 yield 中斷了數次,每次中斷都會通過 yield 返回當前的迭代值。
也可以手動調用 fab(5) 的 next() 方法(因為 fab(5) 是一個 generator 對象,該對象具有 next() 方法),這樣我們就可以更清楚地看到 fab 的執行流程:
>>> f = fab(3)
>>> f.next()
1
>>> f.next()
1
>>> f.next()
2
>>> f.next()
Traceback (most recent call last):
File "<pyshell#62>", line 1, in <module>
f.next()
StopIteration
return作用
在一個生成器中,如果沒有return,則默認執行到函數完畢;如果遇到return,如果在執行過程中 return,則直接拋出 StopIteration 終止迭代。例如
>>> s = fab(5)
>>> s.next()
1
>>> s.next()
Traceback (most recent call last):
File "<pyshell#66>", line 1, in <module>
s.next()
StopIteration
文件讀取
def read_file(fpath):
BLOCK_SIZE = 1024
with open(fpath, 'rb') as f:
while True:
block = f.read(BLOCK_SIZE)
if block:
yield block
else:
return
如果直接對文件對象調用 read() 方法,會導致不可預測的內存占用。好的方法是利用固定長度的緩沖區來不斷讀取文件內容。通過 yield,我們不再需要編寫讀文件的迭代類,就可以輕松實現文件讀取。
send
例子:執行到yield時,gen函數作用暫時保存,返回i的值;temp接收下次c.send("python"),send發送過來的值,c.next()等價c.send(None)
def gen():
i = 0
while i<5:
temp = yield i
print(temp)
i+=1
使用send
f = gen()
f.__next__()
0
f.send('haha')
haha
1
f.__next__()
None
2
f.send('haha')
haha
3
實現多任務
def test1():
while True:
print("--1--")
yield None
def test2():
while True:
print("--2--")
yield None
t1 = test1()
t2 = test2()
while True:
t1.__next__()
t2.__next__()
總結:
生成器是這樣一個函數,它記住上一次返回時在函數體中的位置。對生成器函數的第二次(或第 n 次)調用跳轉至該函數中間,而上次調用的所有局部變量都保持不變。
生成器不僅“記住”了它數據狀態;生成器還“記住”了它在流控制構造(在命令式編程中,這種構造不只是數據值)中的位置。
生成器的特點:
- 節約內存
- 迭代到下一次的調用時,所使用的參數都是第一次所保留下的,即是說,在整個所有函數調用的參數都是第一次所調用時保留的,而不是新創建的