非極大值抑制(Non-Maximum Suppression)

文章作者:Tyan
博客:noahsnail.com ?|? CSDN ?|? 簡書

1. 什么是非極大值抑制

非極大值抑制,簡稱為NMS算法,英文為Non-Maximum Suppression。其思想是搜素局部最大值,抑制極大值。NMS算法在不同應(yīng)用中的具體實現(xiàn)不太一樣,但思想是一樣的。非極大值抑制,在計算機視覺任務(wù)中得到了廣泛的應(yīng)用,例如邊緣檢測、人臉檢測、目標(biāo)檢測(DPM,YOLO,SSD,F(xiàn)aster R-CNN)等。

2. 為什么要用非極大值抑制

以目標(biāo)檢測為例:目標(biāo)檢測的過程中在同一目標(biāo)的位置上會產(chǎn)生大量的候選框,這些候選框相互之間可能會有重疊,此時我們需要利用非極大值抑制找到最佳的目標(biāo)邊界框,消除冗余的邊界框。Demo如下圖:

Object Detection

左圖是人臉檢測的候選框結(jié)果,每個邊界框有一個置信度得分(confidence score),如果不使用非極大值抑制,就會有多個候選框出現(xiàn)。右圖是使用非極大值抑制之后的結(jié)果,符合我們?nèi)四槞z測的預(yù)期結(jié)果。

3. 如何使用非極大值抑制

前提:目標(biāo)邊界框列表及其對應(yīng)的置信度得分列表,設(shè)定閾值,閾值用來刪除重疊較大的邊界框。
IoU:intersection-over-union,即兩個邊界框的交集部分除以它們的并集。

非極大值抑制的流程如下:

  • 根據(jù)置信度得分進行排序

  • 選擇置信度最高的比邊界框添加到最終輸出列表中,將其從邊界框列表中刪除

  • 計算所有邊界框的面積

  • 計算置信度最高的邊界框與其它候選框的IoU。

  • 刪除IoU大于閾值的邊界框

  • 重復(fù)上述過程,直至邊界框列表為空。

Python代碼如下:

#!/usr/bin/env python
# _*_ coding: utf-8 _*_


import cv2
import numpy as np


"""
    Non-max Suppression Algorithm

    @param list  Object candidate bounding boxes
    @param list  Confidence score of bounding boxes
    @param float IoU threshold

    @return Rest boxes after nms operation
"""
def nms(bounding_boxes, confidence_score, threshold):
    # If no bounding boxes, return empty list
    if len(bounding_boxes) == 0:
        return [], []

    # Bounding boxes
    boxes = np.array(bounding_boxes)

    # coordinates of bounding boxes
    start_x = boxes[:, 0]
    start_y = boxes[:, 1]
    end_x = boxes[:, 2]
    end_y = boxes[:, 3]

    # Confidence scores of bounding boxes
    score = np.array(confidence_score)

    # Picked bounding boxes
    picked_boxes = []
    picked_score = []

    # Compute areas of bounding boxes
    areas = (end_x - start_x + 1) * (end_y - start_y + 1)

    # Sort by confidence score of bounding boxes
    order = np.argsort(score)

    # Iterate bounding boxes
    while order.size > 0:
        # The index of largest confidence score
        index = order[-1]

        # Pick the bounding box with largest confidence score
        picked_boxes.append(bounding_boxes[index])
        picked_score.append(confidence_score[index])

        # Compute ordinates of intersection-over-union(IOU)
        x1 = np.maximum(start_x[index], start_x[order[:-1]])
        x2 = np.minimum(end_x[index], end_x[order[:-1]])
        y1 = np.maximum(start_y[index], start_y[order[:-1]])
        y2 = np.minimum(end_y[index], end_y[order[:-1]])

        # Compute areas of intersection-over-union
        w = np.maximum(0.0, x2 - x1 + 1)
        h = np.maximum(0.0, y2 - y1 + 1)
        intersection = w * h

        # Compute the ratio between intersection and union
        ratio = intersection / (areas[index] + areas[order[:-1]] - intersection)

        left = np.where(ratio < threshold)
        order = order[left]

    return picked_boxes, picked_score


# Image name
image_name = 'nms.jpg'

# Bounding boxes
bounding_boxes = [(187, 82, 337, 317), (150, 67, 305, 282), (246, 121, 368, 304)]
confidence_score = [0.9, 0.75, 0.8]

# Read image
image = cv2.imread(image_name)

# Copy image as original
org = image.copy()

# Draw parameters
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 1
thickness = 2

# IoU threshold
threshold = 0.4

# Draw bounding boxes and confidence score
for (start_x, start_y, end_x, end_y), confidence in zip(bounding_boxes, confidence_score):
    (w, h), baseline = cv2.getTextSize(str(confidence), font, font_scale, thickness)
    cv2.rectangle(org, (start_x, start_y - (2 * baseline + 5)), (start_x + w, start_y), (0, 255, 255), -1)
    cv2.rectangle(org, (start_x, start_y), (end_x, end_y), (0, 255, 255), 2)
    cv2.putText(org, str(confidence), (start_x, start_y), font, font_scale, (0, 0, 0), thickness)

# Run non-max suppression algorithm
picked_boxes, picked_score = nms(bounding_boxes, confidence_score, threshold)

# Draw bounding boxes and confidence score after non-maximum supression
for (start_x, start_y, end_x, end_y), confidence in zip(picked_boxes, picked_score):
    (w, h), baseline = cv2.getTextSize(str(confidence), font, font_scale, thickness)
    cv2.rectangle(image, (start_x, start_y - (2 * baseline + 5)), (start_x + w, start_y), (0, 255, 255), -1)
    cv2.rectangle(image, (start_x, start_y), (end_x, end_y), (0, 255, 255), 2)
    cv2.putText(image, str(confidence), (start_x, start_y), font, font_scale, (0, 0, 0), thickness)

# Show image
cv2.imshow('Original', org)
cv2.imshow('NMS', image)
cv2.waitKey(0)

源碼下載地址:https://github.com/SnailTyan/deep-learning-tools/blob/master/nms.py
記得給個Star。Demo原圖在README.md里。

實驗結(jié)果:

  • 閾值為0.6
threshold = 0.6
  • 閾值為0.5
threshold = 0.5
  • 閾值為0.4
threshold = 0.4

4. 參考資料

  1. https://www.pyimagesearch.com/2014/11/17/non-maximum-suppression-object-detection-python/

  2. http://cs.brown.edu/~pff/papers/lsvm-pami.pdf

  3. http://blog.csdn.net/shuzfan/article/details/52711706

  4. http://www.cnblogs.com/liekkas0626/p/5219244.html

  5. http://www.tk4479.net/yzhang6_10/article/details/50886747

  6. http://blog.csdn.net/qq_14845119/article/details/52064928

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。

推薦閱讀更多精彩內(nèi)容