什么是貝塞爾曲線,它能夠做什么?
貝塞爾曲線的名稱來源于一位就職于雷諾的法國工程師Pierre Bézier,他在1962年開始對貝塞爾曲線做了廣泛的宣傳,他使用這種只需要很少的控制點就能生成復雜平滑曲線的方法來進行汽車車體的工業設計,因為它控制簡便卻具有極強的描述能力,所以在工業設計和計算機圖形學等相關領域得到了廣泛應用,比如我們電腦常用的繪圖軟件PhotoShop里的鋼筆工具,這也是貝塞爾曲線的應用之一。
簡單點來說,貝塞爾曲線就是能用數學公式將一條曲線很精準的表現出來。
那么在Android開發中,貝塞爾曲線可以幫我們做出什么效果呢?這里舉幾個例子,簡單點的它可以幫助我們做出很自然的平滑動畫,比如在一個頁面中畫出波浪動畫,餓了么購物車的商品加入動畫等,復雜點的比如QQ消息氣泡的拖拽消失等。
關于貝塞爾曲線,我們需要知道什么?
首先我們需要知道這幾個詞:
數據點:一條路徑的起始點和結束點
控制點:決定一條路徑的曲線軌跡,根據控制點的個數我們可以把貝塞爾曲線分成一階、二階、三階和多階貝塞爾曲線。
其中n階貝塞爾曲線=n-1個控制點,也就是一階貝塞爾曲線是0個控制點也就是一條直線,二階貝塞爾曲線是1個控制點,以此類推。
在Android開發中,系統已經幫我們封裝好了二階和三階的對應實現方法,我們只管調用就行,當然在開發中,我們有時會遇到需要實現多階貝塞爾曲線的情況,這時我們可以把多階進行分解,變成多個二階或者三階的貝塞爾曲線,再以后的博客里我會再提到,這里先做一個入門的介紹,畢竟不能一口氣吃成大胖子。
來看下關于貝塞爾曲線的展示:
一階貝塞爾曲線:
給定對應的P0和P1,分別是起始點和結束點,對應的表達式:
二階貝塞爾曲線:
給定對應的P0和P2,分別是起始點和結束點,P1為控制點,對應的表達式:
三階貝塞爾曲線:
給定對應的P0和P3,分別是起始點和結束點,P1,P2為控制點,對應的表達式:
以上的曲線圖紅色軌跡即為貝塞爾曲線運動軌跡,而綠色的軌跡即為貝塞爾曲線的切線,想了解更多的朋友可以參考下維基百科: 貝塞爾曲線
這里有一個貝塞爾曲線的動態演示圖,大家玩玩感受一下:貝塞爾曲線的動態演示圖
具體代碼實現
好了,大概介紹完貝塞爾曲線的概念后,作為開發者,應該手癢癢的想拿去鍵盤用代碼實現一波了吧?
由于一階貝塞爾曲線沒有控制點,就是一條直線,沒什么好說的 ,這里我打算從二階貝塞爾曲線開始說起,谷歌官方對開發者還是很不錯的,已經提前幫我們封裝好關于二階和三階貝塞爾曲線的實現方法,我們先來看下API:
二階貝塞爾曲線:
對應的實現方式是:Path.quadTo和Path.rQuadTo,它們分別對應的是絕對坐標和相對坐標,兩者是可以互相轉換的。
/**
* Add a quadratic bezier from the last point, approaching control point
* (x1,y1), and ending at (x2,y2). If no moveTo() call has been made for
* this contour, the first point is automatically set to (0,0).
*
* @param x1 The x-coordinate of the control point on a quadratic curve
* @param y1 The y-coordinate of the control point on a quadratic curve
* @param x2 The x-coordinate of the end point on a quadratic curve
* @param y2 The y-coordinate of the end point on a quadratic curve
*/
public void quadTo(float x1, float y1, float x2, float y2) {
isSimplePath = false;
native_quadTo(mNativePath, x1, y1, x2, y2);
}
首先我們先運用Path.moveTo將坐標移動到起始點,然后這里x1,y1代表的是控制點的x,y坐標,x2,y2代表結束點,我們來寫個例子:
package com.lcw.view;
import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.util.AttributeSet;
import android.util.DisplayMetrics;
import android.view.MotionEvent;
import android.view.View;
import android.view.WindowManager;
/**
* 自定義View(二階貝塞爾曲線)
* Create by: chenwei.li
* Date: 2017/4/21
* Time: 下午11:47
* Email: lichenwei.me@foxmail.com
*/
public class BezierQuadView extends View {
//開始點和結束點
private int mStartXPoint;
private int mStartYPoint;
private int mEndXPoint;
private int mEndYPoint;
//控制點
private int mConXPoint;
private int mConYPoint;
//路徑和畫筆
private Path mPath;
private Paint mPaint;
//輔助線畫筆,寫字畫筆
private Paint mLinePaint;
private Paint mTextPaint;
public BezierQuadView(Context context) {
super(context);
init(context);
}
public BezierQuadView(Context context, AttributeSet attrs) {
super(context, attrs);
init(context);
}
public BezierQuadView(Context context, AttributeSet attrs, int defStyleAttr) {
super(context, attrs, defStyleAttr);
init(context);
}
/**
* 進行初始化的一些操作
*/
private void init(Context context) {
//獲取屏幕的寬高
WindowManager windowManager = (WindowManager) context.getSystemService(Context.WINDOW_SERVICE);
DisplayMetrics displayMetrics = new DisplayMetrics();
windowManager.getDefaultDisplay().getMetrics(displayMetrics);
int screenHeight = displayMetrics.heightPixels;
int screenWidth = displayMetrics.widthPixels;
//設置各點的位置
mStartXPoint = screenWidth / 4;
mStartYPoint = screenHeight / 2;
mEndXPoint = screenWidth * 3 / 4;
mEndYPoint = screenHeight / 2;
mConXPoint = screenWidth / 2;
mConYPoint = screenHeight / 2 - 400;
//路徑,畫筆設置
mPath = new Path();
mPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mPaint.setColor(Color.BLUE);
mPaint.setStyle(Paint.Style.STROKE);
mPaint.setStrokeWidth(8);
//輔助線畫筆
mLinePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mLinePaint.setColor(Color.GRAY);
mLinePaint.setStyle(Paint.Style.STROKE);
mLinePaint.setStrokeWidth(3);
//寫字畫筆
mTextPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mTextPaint.setColor(Color.BLACK);
mTextPaint.setStyle(Paint.Style.STROKE);
mTextPaint.setTextSize(20);
}
@Override
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
mPath.reset();
//賽貝爾曲線
mPath.moveTo(mStartXPoint, mStartYPoint);
mPath.quadTo(mConXPoint, mConYPoint, mEndXPoint, mEndYPoint);
canvas.drawPath(mPath, mPaint);
//輔助線
canvas.drawLine(mStartXPoint, mStartYPoint, mConXPoint, mConYPoint, mLinePaint);
canvas.drawLine(mConXPoint, mConYPoint, mEndXPoint, mEndYPoint, mLinePaint);
//文字
canvas.drawPoint(mStartXPoint, mStartYPoint, mPaint);
canvas.drawText("起始點", mStartXPoint, mStartYPoint + 30, mTextPaint);
canvas.drawPoint(mEndXPoint, mEndYPoint, mPaint);
canvas.drawText("結束點", mEndXPoint, mEndYPoint + 30, mTextPaint);
canvas.drawPoint(mConXPoint, mConYPoint, mPaint);
canvas.drawText("控制點", mConXPoint, mConYPoint - 30, mTextPaint);
}
@Override
public boolean onTouchEvent(MotionEvent event) {
switch (event.getAction()){
case MotionEvent.ACTION_MOVE:
mConXPoint= (int) event.getX();
mConYPoint=(int)event.getY();
invalidate();
break;
}
return true;
}
}
三階貝塞爾曲線:
對應的實現方式是:Path.cubicTo和Path.rCubicTo,它們分別對應的是絕對坐標和相對坐標,兩者是可以互相轉換的。
/**
* Add a cubic bezier from the last point, approaching control points
* (x1,y1) and (x2,y2), and ending at (x3,y3). If no moveTo() call has been
* made for this contour, the first point is automatically set to (0,0).
*
* @param x1 The x-coordinate of the 1st control point on a cubic curve
* @param y1 The y-coordinate of the 1st control point on a cubic curve
* @param x2 The x-coordinate of the 2nd control point on a cubic curve
* @param y2 The y-coordinate of the 2nd control point on a cubic curve
* @param x3 The x-coordinate of the end point on a cubic curve
* @param y3 The y-coordinate of the end point on a cubic curve
*/
public void cubicTo(float x1, float y1, float x2, float y2,
float x3, float y3) {
isSimplePath = false;
native_cubicTo(mNativePath, x1, y1, x2, y2, x3, y3);
}
來看下運行效果圖:
首先我們先運用Path.moveTo將坐標移動到起始點,然后這里x1,y1代表的是控制點1的x,y坐標,x2,y2代表的是控制點2的x,y坐標,x3,y3代表結束點,我們來寫個例子:
package com.lcw.view;
import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;
import android.graphics.Path;
import android.util.AttributeSet;
import android.util.DisplayMetrics;
import android.view.View;
import android.view.WindowManager;
/**
* 自定義View(三階貝塞爾曲線)
* Create by: chenwei.li
* Date: 2017/4/21
* Time: 下午11:47
* Email: lichenwei.me@foxmail.com
*/
public class BezierCubicView extends View {
//開始點和結束點
private int mStartXPoint;
private int mStartYPoint;
private int mEndXPoint;
private int mEndYPoint;
//控制點
private int mConOneXPoint;
private int mConOneYPoint;
private int mConTwoXPoint;
private int mConTwoYPoint;
//路徑和畫筆
private Path mPath;
private Paint mPaint;
//輔助線畫筆,寫字畫筆
private Paint mLinePaint;
private Paint mTextPaint;
public BezierCubicView(Context context) {
super(context);
init(context);
}
public BezierCubicView(Context context, AttributeSet attrs) {
super(context, attrs);
init(context);
}
public BezierCubicView(Context context, AttributeSet attrs, int defStyleAttr) {
super(context, attrs, defStyleAttr);
init(context);
}
/**
* 進行初始化的一些操作
*/
private void init(Context context) {
//獲取屏幕的寬高
WindowManager windowManager = (WindowManager) context.getSystemService(Context.WINDOW_SERVICE);
DisplayMetrics displayMetrics = new DisplayMetrics();
windowManager.getDefaultDisplay().getMetrics(displayMetrics);
int screenHeight = displayMetrics.heightPixels;
int screenWidth = displayMetrics.widthPixels;
//設置各點的位置
mStartXPoint = screenWidth / 4;
mStartYPoint = screenHeight / 2;
mEndXPoint = screenWidth * 3 / 4;
mEndYPoint = screenHeight / 2;
mConOneXPoint = screenWidth / 2 - 300;
mConOneYPoint = screenHeight / 2 - 400;
mConTwoXPoint = screenWidth / 2 + 100;
mConTwoYPoint = screenHeight / 2 - 400;
//路徑,畫筆設置
mPath = new Path();
mPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mPaint.setColor(Color.BLUE);
mPaint.setStyle(Paint.Style.STROKE);
mPaint.setStrokeWidth(8);
//輔助線畫筆
mLinePaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mLinePaint.setColor(Color.GRAY);
mLinePaint.setStyle(Paint.Style.STROKE);
mLinePaint.setStrokeWidth(3);
//寫字畫筆
mTextPaint = new Paint(Paint.ANTI_ALIAS_FLAG);
mTextPaint.setColor(Color.BLACK);
mTextPaint.setStyle(Paint.Style.STROKE);
mTextPaint.setTextSize(20);
}
@Override
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
//賽貝爾曲線
mPath.moveTo(mStartXPoint, mStartYPoint);
mPath.cubicTo(mConOneXPoint, mConOneYPoint,mConTwoXPoint,mConTwoYPoint,mEndXPoint, mEndYPoint);
canvas.drawPath(mPath, mPaint);
//輔助線
canvas.drawLine(mStartXPoint, mStartYPoint, mConOneXPoint, mConOneYPoint, mLinePaint);
canvas.drawLine(mConOneXPoint, mConOneYPoint, mConTwoXPoint, mConTwoYPoint, mLinePaint);
canvas.drawLine(mConTwoXPoint, mConTwoYPoint, mEndXPoint, mEndYPoint, mLinePaint);
//文字
canvas.drawPoint(mStartXPoint, mStartYPoint, mPaint);
canvas.drawText("起始點", mStartXPoint, mStartYPoint + 30, mTextPaint);
canvas.drawPoint(mEndXPoint, mEndYPoint, mPaint);
canvas.drawText("結束點", mEndXPoint, mEndYPoint + 30, mTextPaint);
canvas.drawPoint(mConOneXPoint, mConOneYPoint, mPaint);
canvas.drawText("控制點1", mConOneXPoint, mConOneYPoint - 30, mTextPaint);
canvas.drawPoint(mConTwoXPoint, mConTwoYPoint, mPaint);
canvas.drawText("控制點2", mConTwoXPoint, mConTwoYPoint - 30, mTextPaint);
}
}
來看下運行效果圖:
現在,我們監聽下屏幕的觸摸事件,讓控制點隨著我們手指的移動而移動,看看會是什么樣的效果:
@Override
public boolean onTouchEvent(MotionEvent event) {
switch (event.getAction()){
case MotionEvent.ACTION_MOVE:
mConXPoint= (int) event.getX();
mConYPoint=(int)event.getY();
invalidate();
break;
}
return true;
}
@Override
public boolean onTouchEvent(MotionEvent event) {
switch (event.getAction() & MotionEvent.ACTION_MASK) {
case MotionEvent.ACTION_POINTER_DOWN:
mFlag = true;
break;
case MotionEvent.ACTION_POINTER_UP:
mFlag = false;
break;
case MotionEvent.ACTION_MOVE:
mConOneXPoint = (int) event.getX(0);
mConOneYPoint = (int) event.getY(0);
if (mFlag) {
mConTwoXPoint = (int) event.getY(1);
mConTwoYPoint = (int) event.getY(1);
}
invalidate();
break;
}
return true;
}
怎么樣,曲線的繪制很自然吧,這就是貝塞爾曲線的入門使用了。入門篇到這里就結束了,下次給朋友們帶來貝塞爾曲線的進階篇。
源碼下載:
這里附上源碼地址(歡迎Star,歡迎Fork):源碼下載