概念
連通圖的生成樹是一個極小的連通子圖,它含有圖中全部的n個頂點,但只有足以構成一顆樹的n-1條邊。
構造連通網的最小代價生成樹簡稱為最小生成樹。
Prim 算法
算法思路
- 定義2個數組,adjvex 用來保存相關頂點下標,lowcost 保存頂點之間的權值
- 初始化2個數組, 從v0開始尋找最小?成樹, 默認v0是最小生成樹上第一個頂點
- 循環lowcost 數組,根據權值,找到頂點 k;
- 更新lowcost 數組
- 循環所有頂點,找到與頂點k 有關系的頂點. 并更新lowcost 數組與adjvex 數組;
注意更新lowcost 數組與adjvex 數組的條件:
- 與頂點k 之間有連接
- 當前結點 j 沒有加入過最小生成樹;
- 頂點 k 與 當前頂點 j 之間的權值 小于 頂點j 與其他頂點 k 之前的權值. 則更新. 簡單說就是要比較之前存儲的值要小,則更新;
代碼實現
/*
Prim算法生成最小生成樹
*/
void MiniSpanTree_Prim(MGraph G) {
int min, i, j, k;
int sum = 0;
int adjvex[MAXVEX];
int lowcost[MAXVEX];
lowcost[0] = 0;
adjvex[0] = 0;
for (i = 1; i < G.numVertexes; i++) {
lowcost[i] = G.arc[0][i];
adjvex[i] = 0;
}
for (i = 1; i < G.numVertexes; i++) {
min = INFINITYC;
j = 1;
k = 0;
for (j = 1; j < G.numVertexes; j++) {
if (lowcost[j] != 0 && lowcost[j] < min) {
min = lowcost[j];
k = j;
}
}
printf("(V%d, V%d) = %d\n", adjvex[k], k , G.arc[adjvex[k]][k]);
sum += G.arc[adjvex[k]][k];
lowcost[k] = 0;
for (j = 1; j < G.numVertexes; j++) {
if (lowcost[j] != 0 && G.arc[k][j] < lowcost[j]) {
lowcost[j] = G.arc[k][j];
adjvex[j] = k;
}
}
}
printf("sum = %d\n", sum);
}
Kruskal 算法
算法思路
- 將鄰接矩陣轉化成邊表數組;
- 對邊表數組根據權值按照從小到大的順序排序;
- 遍歷所有的邊, 通過parent 數組找到邊的連接信息,避免閉環問題;
- 如果不存在閉環問題,則加入到最小生成樹中,并且修改parent 數組;
代碼實現
typedef struct Edge {
int begin;
int end;
int weight;
} Edge;
/*
Prim算法生成最小生成樹
*/
void Swapn(Edge *edges, int i, int j) {
int temp;
temp = edges[i].begin;
edges[i].begin = edges[j].begin;
edges[j].begin = temp;
temp = edges[i].end;
edges[i].end = edges[j].end;
edges[j].end = temp;
temp = edges[i].weight;
edges[i].weight = edges[j].weight;
edges[j].weight = temp;
}
void Sort(Edge edges[], MGraph *G) {
int i, j;
for (i = 0; i < G->numEdges; i++) {
for (j = i + 1; j < G->numEdges; j++) {
if (edges[i].weight > edges[j].weight) {
Swapn(edges, i, j);
}
}
}
}
int Find(int *parent, int f) {
while (parent[f] > 0) {
f = parent[f];
}
return f;
}
void MiniSpanTree_Kruskal(MGraph G) {
int i, j, n, m;
int sum = 0;
int k = 0;
Edge edges[MAXVEX];
for (i = 0; i < G.numVertexes; i++) {
for (j = i + 1; j < G.numVertexes; j++) {
if (G.arc[i][j] < INFINITYC) {
edges[k].begin = i;
edges[k].end = j;
edges[k].weight = G.arc[i][j];
k++;
}
}
}
Sort(edges, &G);
int parent[MAXVEX] = {0};
for (i = 0; i < G.numEdges; i++) {
m = Find(parent, edges[i].begin);
n = Find(parent, edges[i].end);
if (m != n) {
parent[m] = n;
sum += edges[i].weight;
printf("(%d, %d) %d\n", edges[i].begin, edges[i].end, edges[i].weight);
}
}
printf("sum = %d\n", sum);
}