樹
@(數據結構)
[TOC]
樹的定義
(遞歸)一棵樹是一些節點的集合。這個集合可以是空集;若不是空集,則樹由稱作根的節點 r 以及 0 個或多個非空的(子)樹 $T_1,T_2,···,T_k$ 組成,這些子樹中每一棵的根都被來自根 r 的一條有向邊所連結。
樹的實現
//樹節點的聲明
class TreeNode
{
Object element;
TreeNode firstChild;
TreeNode netSibling;
}
將每個節點的所有兒子都放到樹節點的鏈表中。
樹的遍歷
- 先序遍歷
- 后序遍歷
- 中序遍歷
二叉樹
二叉樹(binary tree)是一棵樹,其中每個節點都不能有多于兩個的兒子。
二叉樹平均深度為 $O(\sqrt{N})$,最大深度為 $N$。
二叉查找樹的平均深度為 $O(log N)$。
//二叉樹節點類
class BinaryNode
{
//Friendly data;accessible by other package toutines
Object element;//The data in the node
BinaryNode left;//Left child
BinaryNode right;//right child
}
查找樹ADT——二叉查找樹
使二叉樹成為查找樹的性質是,對于樹中的每個節點 X ,它的左子樹中所有項的值小于 X 中的項,而它的右子樹中所有項的值大于 X 中的項。
//BinaryNode類
private static class BinaryNode<AnyType>
{
//Constructors
BinaryNode(AnyType theElement)
{this(theElement, null, null);}
BinaryNode(AnyType theElement, BinaryNode<AnyType> lt, BinaryNode<AnyType> rt)
{element = theElement; left = lt; right = rt;}
AnyType element;//The data in the node
BinaryNode<AnyType> left;//Left child
BinaryNode<AnyType> right;//Right child
}
二叉查找樹架構
//二叉查找樹架構
public class BinarySearchTree<AnyType extends comparable<? super AnyType>>
{
private static class BinaryNode<AnyType>
{
//Constructors
BinaryNode(AnyType theElement)
{this(theElement, null, null);}
BinaryNode(AnyType theElement, BinaryNode<AnyType> lt, BinaryNode<AnyType> rt)
{element = theElement; left = lt; right = rt;}
AnyType element;//The data in the node
BinaryNode<AnyType> left;//Left child
BinaryNode<AnyType> right;//Right child
}
private BinaryNode<AnyType> root;
public BinarySearchTree()
{ root = null; }
public void makeEmpty()
{ root = null; }
public boolean isEmpty()
{ return root == null; }
public boolean contains( AnyType x )
{ return contains( x, root ); }
public AnyType findMin()
{
if (isEmpty()) throw new UnderflowException();
return findMin(root).element;
}
public AnyType finMax()
{
if (isEmpty()) throw new UnderflowException();
return finMax(roow).element;
}
public void insert(AnyType x)
{ root = insert(x,root); }
public void remove(AnyType x)
{ root = remove(x,root); }
public void printTree()
{
if (isEmpty())
System.out.println("Empty tree");
else
printTree(roo?t);
}
private boolean contains(AnyType x, BinaryNode<AnyType> t)
{
if (t == null)
return false;
int compareResult = x.compareTo(t.element);
if(compareResult < 0)
return contains(x, t.left);
else if(compareResult > 0)
return contains(x, t.right);
else
return true; //Match
}
private BinaryNode<AnyType> findMin(BinaryNode<AnyType> t)
{
if(t == null)
return null;
else if(t.left == null)
return t;
return findMin(t.left);
}
private BinaryNode<AnyType> finMax(BinaryNode<AnyType> t)
{
if(t != null)
while(t.right != null)
t = t.right;
return t;
}
private BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> t)
{
if(t == null)
return new BinaryNode<>(x, null, null);
int compareResult = x.compareTo(t.element);
if(compareResult < 0)
t.left = insert(x, t.left);
else if(compareResult > 0)
t.right = insert(x, t.right);
else
;//Duplicate; do nothing
return t;
}
private BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> t)
{
if(t == null)
return t;//Item not found; do nothing
int compareResult = x.compareTo(t.element);
if(compareResult < 0)
t.left = remove(x, t.left);
else if(compareResult > 0)
t.right = remove(x, t.right);
else if(t.left != null && t.right != null)//Two children
{
t.element = findMin(t.right).element;
t.right = remove(t.element, t.right);
}
else
t = (t.left != null) ? t.left : t.right;
return t;
}
private void printTree(BinaryNode<AnyType> t)
{
if (t != null) {
printTree(t.left);
System.out.println(t.element);
printTree(t.right);
}
}
}
contains方法
如果樹 $T$ 中含有項 $X$ 的節點,那么這個操作需要返回true,如果這樣的節點不存在則返回false。樹的結構使這種操作很簡單。如果 $T$ 是空集,那么久返回false。否則,如果存儲在 $T$ 處的項是 $X$ ,那么可以返回true。否則,我們對數 $T$ 的左子樹或右子樹進行一次遞歸調用,則依賴于 $X$ 與存儲在 $T$ 中的項的關系。
/**
* Internal method to find an item in a subtree
* @param x is item to search for.
* @param t the node that roots the subtree.
* @return true if the item is found; false otherwise.
*/
//二叉查找樹的contains操作
private boolean contains(AnyType x, BinaryNode<AnyType> t)
{
if (t == null)
return false;
int compareResult = x.compareTo(t.element);
if(compareResult < 0)
return contains(x, t.left);
else if(compareResult > 0)
return contains(x, t.right);
else
return true; //Match
}
//遞歸用while循環代替
while(compareResult <0)
{
t=t.left;
compareResult = x.compareTo(t.element);
}
算法表達式的簡明性是以速度的降低為代價的。
findMin方法和findMax方法
這兩個方法分別返回樹中包含最小元和最大元的節點的引用。為執行findMin,從根開始并且只要有左兒子就向左進行。 終止點就是最小的元素。findMax除分支朝向右兒子其余過程相同。
//用遞歸編寫findMin,用非遞歸編寫findMax
/**
* Internal method to find the smallest item in a subtree
* @param t the node that roots the subtree.
* @return node containing the smallest item
*/
private BinaryNode<AnyType> findMin(BinaryNode<AnyType> t)
{
if(t == null)
return null;
else if(t.left == null)
return t;
return findMin(t.left);
}
/**
* Internal method to find the largest item in a subtree
* @param t the node that roots the subtree.
* @return node containing the largest item.
*/
private BinaryNode<AnyType> finMax(BinaryNode<AnyType> t)
{
if(t != null)
while(t.right != null)
t = t.right;
return t;
}
insert方法
/**
* Internal method to insert in?to a subtree
* @param x the item to insert
* @param t the node that roots the subtree
* @return the new root of the subtree
*/
private BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> t)
{
if(t == null)
return new BinaryNode<>(x, null, null);
int compareResult = x.compareTo(t.element);
if(compareResult < 0)
t.left = insert(x, t.left);
else if(compareResult > 0)
t.right = insert(x, t.right);
else
;//Duplicate; do nothing
return t;
}
remove方法
/**
* Internal method to remove from a subtree
* @param x the item to remove.
* @param t the node that roots the subtree.
* @return the new root of the subtree
*/
private BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> t)
{
if(t == null)
return t;//Item not found; do nothing
int compareResult = x.compareTo(t.element);
if(compareResult < 0)
t.left = remove(x, t.left);
else if(compareResult > 0)
t.right = remove(x, t.right);
else if(t.left != null && t.right != null)//Node that has two children
{
t.element = findMin(t.right).element;//Find the minimum item of right subtree
t.right = remove(t.element, t.right);//Remove the node of minimum item recursively
}
else
t = (t.left != null) ? t.left : t.right;//Node that has one children; parent of the node roots subtree of th?e node
return t;
}
- 如果節點是樹葉,可以直接刪除。
- 如果節點有一個兒子,這該節點需要在其父節點調整自己的鏈以繞過該節點
- 如果節點有兩個兒子,一般的刪除策略是用其右子樹的最小的數據代替該節點,并在右子樹中遞歸地刪除那個最小的節點
另外,如果刪除的次數不多,通常使用的策略是懶惰刪除(lazy deletion):當一個元素要被刪除時,它仍留在樹中,而只是被標記為刪除。
AVL樹
AVL樹是帶有平衡條件的二叉查找樹。
這個平衡條件必須要容易保持,而且它保證樹的深度須是 $O(log N)$ 。
一個AVL樹是其每個節點的左子樹和右子樹的高度最多差 1 的二叉查找樹(空樹的高度定義為 -1)。
可以知道,在?高度為 $h$ 的AVL樹中,最少節點數 $S(h)=S(h-1)+S(h-2)+1$ 給出。
對于 $h=0, S(h)=1; h=1, S(h)=2$ 。
函數 $S(h)$ 與斐波那契數密切相關。
那么重點來了,對于AVL樹的插入操作,有可能破壞樹的平衡性。這時候,我們就需要在這一步插入完成之前恢復平衡的性質。
可以知道,從插入的節點往上,逆行到根,若發生平衡信息改變,那么改變的節點一定在這條路徑上。我們需要找出這個需要重新平衡的節點 $\alpha$ 。
對于節點 $\alpha$ ,不平衡條件可能出現在一下四種操作中:
- 對 $\alpha$ 的左兒子的左子樹進行一次插入(LL)。
- 對 $\alpha$ 的左兒子的右子樹進行一次插入(LR)。
- 對 $\alpha$ 的右兒子的左子樹進行一次插入(RL)。
- 對 $\alpha$ 的右兒子的右子樹進行一次插入(RR)。
對于1和4,是插入發生在外邊的情況,通過對樹的一次單旋轉而完成調整。對于2和3,是插入發生在內部的情況,通過對樹的一次雙旋轉而完成調整。
這里先對AvlNode類進行定義:
private static class AvlNode<AnyType>
{
//Constructors
AvlNode(AnyType theElement)
{this(theElement, null, null);}
AvlNode(AnyType theElement, AvlNode<AnyType> lt, AvlNode<AnyType> rt)
{element = theElement; left = lt; right = rt; height = 0;}
AnyType element;//The data in the code
AvlNode<AnyType> left;//Left child
AvlNode<AnyType> right;//Right child
int height;//Height
}
然后需要一個返回節點高度的方法:
//返回AVL樹的節點高度
/**
* return the height of node t, or -1, if null.
*/
private int height(AvlNode<AnyType> t)
{
return t == null ? -1 : t.height;
}
單旋轉
/**
* Rotate binary tree node with left child.
* For AVL trees, this is a single rotation for case 1.
* Update heights, then return new root.
*/
private AvlNode<AnyType> RotationWithLeftChild(AvlNode<AnyType> k2)
{
AVLTreeNode<AnyType> k1 = k2.left;
k2.left = k1.right;
k1.right = k2;
k2.height = Math.max( height(k2.left), height(k2.right)) + 1;
k1.height = Math.max( height(k1.left), k2.height) + 1;
return k1;
}
/**
* Rotate binary tree node with right child.
* For AVL trees, this is a single rotation for case 4.
* Update heights, then return new root.
*/
private AvlNode<AnyType> RotationWithRightChild(AvlNode<AnyType> k1)
{
AVLTreeNode<AnyType> k2 = k1.right;
k1.right = k2.left;
k2.left = k1;
k1.height = Math.max( height(k1.left), height(k1.right)) + 1;
k1.height = Math.max( height(k2.right), k1.height) + 1;
return k2;
}
雙旋轉
/**
* Double rotate binary tree node: first left child
* with its right child; then node k3 with new left child.
* For AVL trees, this is a double rotation for case 2.
* Update heights, then return new root.
*/
private AvlNode<AnyType> doubleWithLeftChild(AvlNode<AnyType> k3)
{
k3.left = RotationWithRightChild(k3.left);
return RotationWithLeftChild(k3);
}
/**
* Double rotate binary tree node: first right child
* with its left child; then node k1 with new right child.
* For AVL trees, this is a double rotation for case 3.
* Update heights, then return new root.
*/
private AvlNode<AnyType> doubleWithRightChild(AvlNode<AnyType> k1)
{
k1.right = RotationWithRightChild(k1.right);
return RotationWithLeftChild(k1);
}
AVL樹的插入方法
插入方法就是前文中的insert方法,只是在最后一行調用平衡的方法以保持AVL樹的平衡性。
/**
* Internal method to insert into a subtree.
* @param x the item to insert.
* @param t the node that roots the subtree.
* @return the new root of the subtree.
*/
private AvlNode<AnyType> insert(AnyType x, AvlNode<AnyType> t)
{
if(t == null)
return new AvlNode<>(x, null, null);
int compareResult = x.compareTo(t.element);
if(compareResult < 0)
t.left = insert(x, t.left);
else if(compareResult > 0)
t.right = insert(x, t.right);
else
;//Duplicate; do nothing
return balance(t);
}
private static final int ALLOWED_IMBALLANCE = 1;
//Assume t is either balanced of within one of being balanced
private AvlNode<AnyType> balance(AvlNode<AnyType> t)
{
if(t == null)
return t;
if(height(t.left) - height(t.right) > ALLOWED_IMBALLANCE)
if(height(t.left.left) >= height(t.left.right))
t = RotationWithLeftChild(t);
else
t = doubleWithLeftChild(t);
else
if(height(t.right) - height(t.left) > ALLOWED_IMBALLANCE)
if(height(t.right.right) >= height(t.right.left))
t = RotationWithRightChild(t);
else
t = doubleWithRightChild(t);
t.height = Math.max(height(t.left), height(t.right)) + 1;
return t;
}
AVL樹的刪除方法
和AVL樹的插入一樣,只用在前文的刪除方法最后加上一行調用平衡的方法即可。
private AvlNode<AnyType> remove(AnyType x, AvlNode<AnyType> t)
{
if(t == null)
return t;//Item not found; do nothing
int compareResult = x.compareTo(t.element);
if(compareResult < 0)
t.left = remove(x, t.left);
else if(compareResult > 0)
t.right = remove(x, t.right);
else if(t.left != null && t.right != null)//Node that has two children
{
t.element = findMin(t.right).element;//Find the minimum item of right subtree
t.right = remove(t.element, t.right);//Remove the node of minimum item recursively
}
else
t = (t.left != null) ? t.left : t.right;//Node that has one children; parent of the node roots subtree of th?e node
return balance(t);
}