HashMap源碼學習(put方法和get方法)

1.put方法

1.把存入元素用hashcode產生hash值然后用hash%table.length取余產生數組下標
2.當插入元素hash相同時,存入數組某個元素的鏈表中,
從頭部存入。然后把新插入的元素移動一下,使得get獲得值變成最后put的元素

HashMap中的put方法

//閾值(java1.8中和1.7中不太一樣)
 this.threshold = tableSizeFor(initialCapacity);
 //返回大于等于傳入數字的二的次方數
    static final int tableSizeFor(int cap) {
        int n = cap - 1;//減一的原因是擔心直接輸入二的次方數,類似4,8,16
        n |= n >>> 1;//二進制右移一位進行或運算
        n |= n >>> 2;//右移最大只有16位是因為int類型最大32位
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        //最后得到的數字應該全部是一
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
        //判斷是否大于最大容量,不是的話加1就是結果
    }
    
    //8bit(位)=1Byte(字節)一位在內存中有一個格子
    //1024Byte(字節)=1KB
    //1024KB=1MB
    //1024MB=1GB
    //異或運算,相同為0不同為1
//put方法第一步:初始化tab
n = (tab = resize()).length;
//第二步算出當前插入元素的數組下標,看這個下標的內部元素
//是否為空,如果為空就new Node
if ((p = tab[i = (n - 1) & hash]) == null)
//如果不是空,先新建兩個變量,就執行以下三個判斷
Node<K,V> e; K k;
//第一步判斷當前結點key和插入的key是否一致,一致就把當前結點p賦值e
 if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
//否則的話判斷p結點的類型是否是一個TreeNode
//紅黑樹方法
//插入紅黑樹
else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//否則的話就走鏈表類型
for (int binCount = 0; ; ++binCount) {
//如果當前結點的下一個結點是空,
    if ((e = p.next) == null) {
    p.next = newNode(hash, key, value, null);
//判斷當前鏈表處的結點數量是否大于TREEIFY_THRESHOLD(8)大于的話就轉換為一個紅黑樹,當第九個來的時候樹化
    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
    treeifyBin(tab, hash);
    break;
    }
//遍歷鏈表判斷當前結點是否找到,找到停止循環,把e賦值給p
    if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))
    break;
    p = e;
    }
//如果已經存在key,則把以前的value替換成新value,并把老的值return回去
if (e != null) { 
    V oldValue = e.value;
    if (!onlyIfAbsent || oldValue == null)e.value = value;
    afterNodeAccess(e);
    return oldValue;
    }
 //上面的代碼進行完還沒有return就修改次數加一,判斷是否需要擴容
 ++modCount;
 if (++size > threshold)
    resize();
    afterNodeInsertion(evict);
    return null;

treeifyBin(tab, hash)轉紅黑樹代碼

final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        //判斷是否為空,或者是否小于64,MIN_TREEIFY_CAPACITY值為64,擴容或者初始化
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();//重新計算下標,減短鏈表
        //判斷當前數組下標是否為空,不為空樹化
        else if ((e = tab[index = (n - 1) & hash]) != null) {
        //樹化代碼
        //遍歷鏈表的每一個元素
            TreeNode<K,V> hd = null, tl = null;
            do {
            //new 一個treeNode結點
                TreeNode<K,V> p = replacementTreeNode(e, null);
                //然后把鏈表變成一個雙向鏈表!!!!!!!
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            //把雙向鏈表變為紅黑樹
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }
//new 一個treeNode
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
        return new TreeNode<>(p.hash, p.key, p.value, next);
    }

關于treeNode解釋
紅黑樹里面的一個結點

TreeNode<K,V> parent;  // 父節點
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev;   //雙向鏈表
boolean red;

treeify(tab)為TreeNode內的一個方法

final void treeify(Node<K,V>[] tab) {
            TreeNode<K,V> root = null;
            //遍歷鏈表
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
                next = (TreeNode<K,V>)x.next;
                x.left = x.right = null;
                //判斷root是否為空,為空把第一個結點變成頭結點
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K,V> p = root;;) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                                  (kc = comparableClassFor(k)) == null) ||
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);

                        TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
                            //把x結點插入紅黑樹,調整紅黑樹
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            //至此形成一個紅黑樹,下面把根節點移動到散列表位置
            //備注:轉換過程保留雙向鏈表,規則,紅黑樹的根節點是雙向鏈表的頭結點,所以使用雙向鏈表
            moveRootToFront(tab, root);
        }

獲得一個對象的hash值方法

identityHashCode()

插入紅黑樹方法putTreeVal

e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
                                       int h, K k, V v) {
            Class<?> kc = null;
            boolean searched = false;
            TreeNode<K,V> root = (parent != null) ? root() : this;
            for (TreeNode<K,V> p = root;;) {
                int dir, ph; K pk;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                    return p;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0) {
                    if (!searched) {
                        TreeNode<K,V> q, ch;
                        searched = true;
                        if (((ch = p.left) != null &&
                             (q = ch.find(h, k, kc)) != null) ||
                            ((ch = p.right) != null &&
                             (q = ch.find(h, k, kc)) != null))
                            return q;
                    }
                    dir = tieBreakOrder(k, pk);
                }

                TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    Node<K,V> xpn = xp.next;
                    TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    xp.next = x;
                    x.parent = x.prev = xp;
                    if (xpn != null)
                        ((TreeNode<K,V>)xpn).prev = x;
                    moveRootToFront(tab, balanceInsertion(root, x));
                    return null;
                }
            }
        }

擴容resize

//size代表當前map數據總量
if (++size > threshold)
            resize();
        afterNodeInsertion(evict);

下面方法包括擴容和初始化

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        //以上內容均為數組初始化,以下內容為擴容
        if (oldTab != null) {
        //遍歷老數組上面的每個元素
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    //表示當前數組位置元素只有一個元素
                    if (e.next == null)
                        //把e元素放入新數組中(計算新數組下標)
                        newTab[e.hash & (newCap - 1)] = e;
                    //如果e是紅黑樹里面的一個結點
                    else if (e instanceof TreeNode)
                    //紅黑樹擴容,傳hashmap自己,和新數組,和老數組當前位置數組元素,和老數組
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    //如果為鏈表,進行擴容
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        //遍歷鏈表每個元素
                        do {
                            next = e.next;
                            //用當前結點的hash值和老數組對象的hash值進行與運算,
                            //只有兩個結果,0/1,把所有鏈表元素遍歷一遍,就將一個長鏈表拆分成兩個鏈表
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)//上面運算等于0的就是low低位數組
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)//等于1就是高位數組
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                        //遍歷結束
                            loTail.next = null;
                            newTab[j] = loHead;//把low組放進前面
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;//把high組接著放
                        }
                    }
                }
            }
        }
        return newTab;
    }
//紅黑樹擴容將樹箱中的節點拆分為上下樹箱,
//或取消樹化(如果現在太小)。僅從調整大小調用,bit為原數組大小
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
            // Relink into lo and hi lists, preserving order
            //新建兩個子樹
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }

            if (loHead != null) 
                //如果低位子樹元素個數小于六個,進行把樹轉化為單向鏈表
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
                    //如果高位數組如果是空,不需要調整樹,以前的就行
                    //如果高位數組為空,則需要重新樹化,調整為平衡二叉樹
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
            //如果高位子樹元素個數小于六個,進行把樹轉化為鏈表
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }
//整個源碼
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

2.get方法

  public V get(Object key) {
        Node<K,V> e;
        //三元運算
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
 final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
        //查找需要查找的key在散列表的數組中的位置,并且把當前數組元素賦給first,判斷這個位置元素是否為空
        //(n-1) & hash 作用是計算數組索引下標
            (first = tab[(n - 1) & hash]) != null) {
            //檢驗大數組第一個結點的key
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
            //第二個結點,如果是二叉樹就調用地下方法
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            //如果不是,樹,那就是一個鏈表,然后遍歷鏈表判斷key和哪個相等
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容