(2018-04-06.Python從Zero到One)一、python高級(jí)編程__1.1.4生成器

上一篇文章為:→1.1.3__slots__

生成器

1. 什么是生成器

通過列表生成式,我們可以直接創(chuàng)建一個(gè)列表。但是,受到內(nèi)存限制,列表容量肯定是有限的。而且,創(chuàng)建一個(gè)包含100萬個(gè)元素的列表,不僅占用很大的存儲(chǔ)空間,如果我們僅僅需要訪問前面幾個(gè)元素,那后面絕大多數(shù)元素占用的空間都白白浪費(fèi)了。所以,如果列表元素可以按照某種算法推算出來,那我們是否可以在循環(huán)的過程中不斷推算出后續(xù)的元素呢?這樣就不必創(chuàng)建完整的list,從而節(jié)省大量的空間。在Python中,這種一邊循環(huán)一邊計(jì)算的機(jī)制,稱為生成器:generator。

2. 創(chuàng)建生成器方法1

要?jiǎng)?chuàng)建一個(gè)生成器,有很多種方法。第一種方法很簡(jiǎn)單,只要把一個(gè)列表生成式的 [ ] 改成 ( )

In [15]: L = [ x*2 for x in range(5)]

In [16]: L
Out[16]: [0, 2, 4, 6, 8]

In [17]: G = ( x*2 for x in range(5))

In [18]: G
Out[18]: <generator object <genexpr> at 0x7f626c132db0>

In [19]:

創(chuàng)建 L 和 G 的區(qū)別僅在于最外層的 [ ] 和 ( ) , L 是一個(gè)列表,而 G 是一個(gè)生成器。我們可以直接打印出L的每一個(gè)元素,但我們?cè)趺创蛴〕鯣的每一個(gè)元素呢?如果要一個(gè)一個(gè)打印出來,可以通過 next() 函數(shù)獲得生成器的下一個(gè)返回值

In [19]: next(G)
Out[19]: 0

In [20]: next(G)
Out[20]: 2

In [21]: next(G)
Out[21]: 4

In [22]: next(G)
Out[22]: 6

In [23]: next(G)
Out[23]: 8

In [24]: next(G)
---------------------------------------------------------------------------
StopIteration                             Traceback (most recent call last)
<ipython-input-24-380e167d6934> in <module>()
----> 1 next(G)

StopIteration: 

In [25]:
In [26]: G = ( x*2 for x in range(5))

In [27]: for x in G:
   ....:     print(x)
   ....:     
0
2
4
6
8

In [28]:

生成器保存的是算法,每次調(diào)用 next(G) ,就計(jì)算出 G 的下一個(gè)元素的值,直到計(jì)算到最后一個(gè)元素,沒有更多的元素時(shí),拋出 StopIteration 的異常。當(dāng)然,這種不斷調(diào)用 next() 實(shí)在是太變態(tài)了,正確的方法是使用 for 循環(huán),因?yàn)樯善饕彩强傻鷮?duì)象。所以,我們創(chuàng)建了一個(gè)生成器后,基本上永遠(yuǎn)不會(huì)調(diào)用 next() ,而是通過 for 循環(huán)來迭代它,并且不需要關(guān)心 StopIteration 異常。

3. 創(chuàng)建生成器方法2

generator非常強(qiáng)大。如果推算的算法比較復(fù)雜,用類似列表生成式的 for 循環(huán)無法實(shí)現(xiàn)的時(shí)候,還可以用函數(shù)來實(shí)現(xiàn)。

比如,著名的斐波拉契數(shù)列(Fibonacci),除第一個(gè)和第二個(gè)數(shù)外,任意一個(gè)數(shù)都可由前兩個(gè)數(shù)相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契數(shù)列用列表生成式寫不出來,但是,用函數(shù)把它打印出來卻很容易:

In [28]: def fib(times):
   ....:     n = 0
   ....:     a,b = 0,1
   ....:     while n<times:
   ....:         print(b)
   ....:         a,b = b,a+b
   ....:         n+=1
   ....:     return 'done'
   ....: 

In [29]: fib(5)
1
1
2
3
5
Out[29]: 'done'

仔細(xì)觀察,可以看出,fib函數(shù)實(shí)際上是定義了斐波拉契數(shù)列的推算規(guī)則,可以從第一個(gè)元素開始,推算出后續(xù)任意的元素,這種邏輯其實(shí)非常類似generator。

也就是說,上面的函數(shù)和generator僅一步之遙。要把fib函數(shù)變成generator,只需要把print(b)改為yield b就可以了:

In [30]: def fib(times):
   ....:     n = 0
   ....:     a,b = 0,1
   ....:     while n<times:
   ....:         yield b
   ....:         a,b = b,a+b
   ....:         n+=1
   ....:     return 'done'
   ....: 

In [31]: F = fib(5)

In [32]: next(F)
Out[32]: 1

In [33]: next(F)
Out[33]: 1

In [34]: next(F)
Out[34]: 2

In [35]: next(F)
Out[35]: 3

In [36]: next(F)
Out[36]: 5

In [37]: next(F)
---------------------------------------------------------------------------
StopIteration                             Traceback (most recent call last)
<ipython-input-37-8c2b02b4361a> in <module>()
----> 1 next(F)

StopIteration: done

在上面fib 的例子,我們?cè)谘h(huán)過程中不斷調(diào)用 yield ,就會(huì)不斷中斷。當(dāng)然要給循環(huán)設(shè)置一個(gè)條件來退出循環(huán),不然就會(huì)產(chǎn)生一個(gè)無限數(shù)列出來。同樣的,把函數(shù)改成generator后,我們基本上從來不會(huì)用 next() 來獲取下一個(gè)返回值,而是直接使用 for 循環(huán)來迭代:

In [38]: for n in fib(5):
   ....:     print(n)
   ....:     
1
1
2
3
5

In [39]:

但是用for循環(huán)調(diào)用generator時(shí),發(fā)現(xiàn)拿不到generator的return語句的返回值。如果想要拿到返回值,必須捕獲StopIteration錯(cuò)誤,返回值包含在StopIteration的value中:

In [39]: g = fib(5)

In [40]: while True:
   ....:     try:
   ....:         x = next(g)
   ....:         print("value:%d"%x)      
   ....:     except StopIteration as e:
   ....:         print("生成器返回值:%s"%e.value)
   ....:         break
   ....:     
value:1
value:1
value:2
value:3
value:5
生成器返回值:done

In [41]:

4. send

例子:執(zhí)行到y(tǒng)ield時(shí),gen函數(shù)作用暫時(shí)保存,返回i的值;temp接收下次c.send("python"),send發(fā)送過來的值,c.next()等價(jià)c.send(None)

In [10]: def gen():
   ....:     i = 0
   ....:     while i<5:
   ....:         temp = yield i
   ....:         print(temp)
   ....:         i+=1
   ....:

使用next函數(shù)

In [11]: f = gen()

In [12]: next(f)
Out[12]: 0

In [13]: next(f)
None
Out[13]: 1

In [14]: next(f)
None
Out[14]: 2

In [15]: next(f)
None
Out[15]: 3

In [16]: next(f)
None
Out[16]: 4

In [17]: next(f)
None
---------------------------------------------------------------------------
StopIteration                             Traceback (most recent call last)
<ipython-input-17-468f0afdf1b9> in <module>()
----> 1 next(f)

StopIteration:

使用next()方法

In [18]: f = gen()

In [19]: f.__next__()
Out[19]: 0

In [20]: f.__next__()
None
Out[20]: 1

In [21]: f.__next__()
None
Out[21]: 2

In [22]: f.__next__()
None
Out[22]: 3

In [23]: f.__next__()
None
Out[23]: 4

In [24]: f.__next__()
None
---------------------------------------------------------------------------
StopIteration                             Traceback (most recent call last)
<ipython-input-24-39ec527346a9> in <module>()
----> 1 f.__next__()

StopIteration:

使用send

In [43]: f = gen()

In [44]: f.__next__()
Out[44]: 0

In [45]: f.send('haha')
haha
Out[45]: 1

In [46]: f.__next__()
None
Out[46]: 2

In [47]: f.send('haha')
haha
Out[47]: 3

In [48]:

總結(jié)

生成器是這樣一個(gè)函數(shù),它記住上一次返回時(shí)在函數(shù)體中的位置。對(duì)生成器函數(shù)的第二次(或第 n 次)調(diào)用跳轉(zhuǎn)至該函數(shù)中間,而上次調(diào)用的所有局部變量都保持不變。

生成器不僅“記住”了它數(shù)據(jù)狀態(tài);生成器還“記住”了它在流控制構(gòu)造(在命令式編程中,這種構(gòu)造不只是數(shù)據(jù)值)中的位置。

生成器的特點(diǎn):

1.節(jié)約內(nèi)存
2.迭代到下一次的調(diào)用時(shí),所使用的參數(shù)都是第一次所保留下的,即是說,在整個(gè)所有函數(shù)調(diào)用的參數(shù)都是第一次所調(diào)用時(shí)保留的,而不是新創(chuàng)建的


下一篇文章為:→1.1.5迭代器
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。

推薦閱讀更多精彩內(nèi)容