16 Spark Streaming源碼解讀之數據清理

  1. Spark Streaming程序的運行,不斷的產生job,不斷的生成RDD、不斷的接收數據存儲數據,不斷的保存元數據等,如果不清理這些數據,內存和磁盤空間都會崩潰,看一下Spark Streaming是如何做清理工作的
  2. Spark Streaming在Job運行完成時會觸發數據清理動作,看JobHandler中run()方法的代碼
def run() {
      try {
        val formattedTime = UIUtils.formatBatchTime(job.time.milliseconds, ssc.graph.batchDuration.milliseconds, showYYYYMMSS = false)
        val batchUrl = s"/streaming/batch/?id=${job.time.milliseconds}"
        val batchLinkText = s"[output operation ${job.outputOpId}, batch time ${formattedTime}]"

        ssc.sc.setJobDescription(
          s"""Streaming job from <a href="$batchUrl">$batchLinkText</a>""")
        ssc.sc.setLocalProperty(BATCH_TIME_PROPERTY_KEY, job.time.milliseconds.toString)
        ssc.sc.setLocalProperty(OUTPUT_OP_ID_PROPERTY_KEY, job.outputOpId.toString)

        // We need to assign `eventLoop` to a temp variable. Otherwise, because
        // `JobScheduler.stop(false)` may set `eventLoop` to null when this method is running, then
        // it's possible that when `post` is called, `eventLoop` happens to null.
        var _eventLoop = eventLoop
        if (_eventLoop != null) {
          _eventLoop.post(JobStarted(job, clock.getTimeMillis()))
          // Disable checks for existing output directories in jobs launched by the streaming
          // scheduler, since we may need to write output to an existing directory during checkpoint
          // recovery; see SPARK-4835 for more details.
          PairRDDFunctions.disableOutputSpecValidation.withValue(true) {
            // run方法中包含了job的提交函數,觸發sparkContext.runJob,真正的提交job
            job.run()
          }
          _eventLoop = eventLoop
          if (_eventLoop != null) {
            _eventLoop.post(JobCompleted(job, clock.getTimeMillis()))
          }
        } else {
          // JobScheduler has been stopped.
        }
      } finally {
        ssc.sc.setLocalProperty(JobScheduler.BATCH_TIME_PROPERTY_KEY, null)
        ssc.sc.setLocalProperty(JobScheduler.OUTPUT_OP_ID_PROPERTY_KEY, null)
      }
 }

job.run執行之后,job運行完成。發送一個JobCompleted消息給事件循環器,事件循環器調用handleJobCompletion()方法,代碼如下

private def handleJobCompletion(job: Job, completedTime: Long) {
    val jobSet = jobSets.get(job.time)
    jobSet.handleJobCompletion(job)
    job.setEndTime(completedTime)
    listenerBus.post(StreamingListenerOutputOperationCompleted(job.toOutputOperationInfo))
    logInfo("Finished job " + job.id + " from job set of time " + jobSet.time)
    if (jobSet.hasCompleted) {
      jobSets.remove(jobSet.time)
      jobGenerator.onBatchCompletion(jobSet.time)
      logInfo("Total delay: %.3f s for time %s (execution: %.3f s)".format(
        jobSet.totalDelay / 1000.0, jobSet.time.toString,
        jobSet.processingDelay / 1000.0
      ))
      listenerBus.post(StreamingListenerBatchCompleted(jobSet.toBatchInfo))
    }
    job.result match {
      case Failure(e) =>
        reportError("Error running job " + job, e)
      case _ =>
    }
}
  1. 這里判斷了jobSet是否完成,如果完成調用jobGenerator的onBatchCompletion方法,代碼如下
jobGenerator.onBatchCompletion(jobSet.time)

onBachCompletion的代碼如下

def onBatchCompletion(time: Time) { 
      eventLoop.post(ClearMetadata(time))
}

然后發送一個ClearMetadata消息,看他的ClearMetadata的處理方法,代碼如下

 private def clearMetadata(time: Time) {
    ssc.graph.clearMetadata(time)

    // If checkpointing is enabled, then checkpoint,
    // else mark batch to be fully processed
    if (shouldCheckpoint) {
      eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = true))
    } else {
      // If checkpointing is not enabled, then delete metadata information about
      // received blocks (block data not saved in any case). Otherwise, wait for
      // checkpointing of this batch to complete.
      val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
      jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
      jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
      markBatchFullyProcessed(time)
    }
}
  1. 這里調用了DStreamGreph的clearMetadata()方法,代碼如下
def clearMetadata(time: Time) {
    logDebug("Clearing metadata for time " + time)
    this.synchronized {
      outputStreams.foreach(_.clearMetadata(time))
    }
    logDebug("Cleared old metadata for time " + time)
}

分別調用每一個outputStream的clearMetadata(time)方法,代碼如下

private[streaming] def clearMetadata(time: Time) {
    val unpersistData = ssc.conf.getBoolean("spark.streaming.unpersist", true)
    val oldRDDs = generatedRDDs.filter(_._1 <= (time - rememberDuration))
    logDebug("Clearing references to old RDDs: [" +
      oldRDDs.map(x => s"${x._1} -> ${x._2.id}").mkString(", ") + "]")
    generatedRDDs --= oldRDDs.keys
    if (unpersistData) {
      logDebug("Unpersisting old RDDs: " + oldRDDs.values.map(_.id).mkString(", "))
      oldRDDs.values.foreach { rdd =>
        rdd.unpersist(false)
        // Explicitly remove blocks of BlockRDD
        rdd match {
          case b: BlockRDD[_] =>
            logInfo("Removing blocks of RDD " + b + " of time " + time)
            b.removeBlocks()
          case _ =>
        }
      }
    }
    logDebug("Cleared " + oldRDDs.size + " RDDs that were older than " +
      (time - rememberDuration) + ": " + oldRDDs.keys.mkString(", "))
    dependencies.foreach(_.clearMetadata(time))
}
  1. 第一步從generatedRDDs中過濾出不用的oldRDDs ,過濾的依據是當前batch的時間-rememberDuration,rememberDuration很關鍵,一般是batch的倍數,如果有windows操作,他會加上windowsDuration,最終結果就是保證還需要被使用的RDD不被清理。
    第二步從內存數據結構generatedRDDs中刪除oldRDDs
    第三步判斷是否清理RDD的持久化數據,默認是清理,調用rdd的unpersist方法清理緩存數據。如果是BlockRDD,調用BlockRDD的removeBlocks()方法,從BlockManager中清除BlockRDD接收的數據
    第四步清理依賴關系
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容