LeetCode 0122. Best Time to Buy and Sell Stock II買賣股票的最佳時機 II【Easy】【Python】【貪心】【動態規劃】
Problem
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete as many transactions as you like (i.e., buy one and sell one share of the stock multiple times).
Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).
Example 1:
Input: [7,1,5,3,6,4]
Output: 7
Explanation: Buy on day 2 (price = 1) and sell on day 3 (price = 5), profit = 5-1 = 4.
Then buy on day 4 (price = 3) and sell on day 5 (price = 6), profit = 6-3 = 3.
Example 2:
Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are engaging multiple transactions at the same time. You must sell before buying again.
Example 3:
Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.
問題
給定一個數組,它的第 i 個元素是一支給定股票第 i 天的價格。
設計一個算法來計算你所能獲取的最大利潤。你可以盡可能地完成更多的交易(多次買賣一支股票)。
注意: 你不能同時參與多筆交易(你必須在再次購買前出售掉之前的股票)。
示例 1:
輸入: [7,1,5,3,6,4]
輸出: 7
解釋: 在第 2 天(股票價格 = 1)的時候買入,在第 3 天(股票價格 = 5)的時候賣出, 這筆交易所能獲得利潤 = 5-1 = 4 。
隨后,在第 4 天(股票價格 = 3)的時候買入,在第 5 天(股票價格 = 6)的時候賣出, 這筆交易所能獲得利潤 = 6-3 = 3 。
示例 2:
輸入: [1,2,3,4,5]
輸出: 4
解釋: 在第 1 天(股票價格 = 1)的時候買入,在第 5 天 (股票價格 = 5)的時候賣出, 這筆交易所能獲得利潤 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接連購買股票,之后再將它們賣出。
因為這樣屬于同時參與了多筆交易,你必須在再次購買前出售掉之前的股票。
示例 3:
輸入: [7,6,4,3,1]
輸出: 0
解釋: 在這種情況下, 沒有交易完成, 所以最大利潤為 0。
思路
解法一
貪心
根據題意,是按照每天的順序進行股票買入與賣出。
于是,只要后一天價格大于前一天價格,就可買入賣出這只股票。
時間復雜度: O(len(prices))
空間復雜度: O(1)
Python3代碼
class Solution:
def maxProfit(self, prices: List[int]) -> int:
# solution one: 貪心
if not prices or len(prices) == 0:
return 0
profit = 0
for i in range(len(prices)-1):
if(prices[i+1] > prices[i]):
profit += prices[i+1] - prices[i]
return profit
解法二
動態規劃
找到狀態方程
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
解釋:昨天沒有股票,昨天有股票今天賣出
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k][0] - prices[i])
解釋:昨天有股票,昨天沒有股票今天買入
base case:
dp[-1][k][0] = dp[i][k][0] = 0
dp[-1][k][1] = dp[i][k][1] = -inf
k = +inf
因為 k 為正無窮,那么可以把 k 和 k-1 看成是一樣的。
buy+sell = 一次完整的交易,這里把 sell 看成一次交易,所以第一行是 k-1。
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k-1][1] + prices[i])
= max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k][0] - prices[i])
所以 k 對狀態轉移沒有影響:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i])
i = 0 時,dp[i-1] 不合法。
dp[0][0] = max(dp[-1][0], dp[-1][1] + prices[i])
= max(0, -infinity + prices[i])
= 0
dp[0][1] = max(dp[-1][1], dp[-1][0] - prices[i])
= max(-infinity, 0 - prices[i])
= -prices[i]
空間復雜度: O(1)
Python3代碼
class Solution:
def maxProfit(self, prices: List[int]) -> int:
# solution two: 動態規劃
dp_i_0 = 0
dp_i_1 = float('-inf') # 負無窮
for i in range(len(prices)):
temp = dp_i_0
# 昨天沒有股票,昨天有股票今天賣出
dp_i_0 = max(dp_i_0, dp_i_1 + prices[i]) # dp_i_0 和 dp_i_1 可以看成是變量,存儲的都是上一次即昨天的值
# 昨天有股票,昨天沒有股票今天買入
dp_i_1 = max(dp_i_1, temp - prices[i])
return dp_i_0