bloomfilter的簡單實現

布隆過濾器(英語:Bloom Filter)是1970年由布隆提出的,可以用于檢索一個元素是否在一個集合中。

原理

布隆過濾器的原理是,當一個元素被加入集合時,通過K個散列函數將這個元素映射成一個位數組中的K個點,把它們置為1。檢索時,我們只要看看這些點是不是都是1就(大約)知道集合中有沒有它了:如果這些點有任何一個0,則被檢元素一定不在;如果都是1,則被檢元素很可能在。

優(yōu)點

運行快速,內存占用小。一般方法是將集合中所有元素保存起來,然后通過比較確定。鏈表、樹、哈希表等數據結構都是這種思路。但是隨著集合中元素的增加,我們需要的存儲空間越來越大。同時檢索速度也越來越慢。

缺點

  • 隨著存入的元素數量增加,誤算率隨之增加。但是如果元素數量太少,則使用散列表足矣。
  • 一般情況下不能從布隆過濾器中刪除元素.

實現

public class BloomFilter {
    private final int size;
    private final int hashCount;
    private final BitSet bitSet;

    public BloomFilter(int size, int hashCount) {
        this.size = size;
        this.hashCount = hashCount;
        bitSet = new BitSet(size);
    }

    public void add(String key) {
        for (int seed = 1; seed <= hashCount; seed++) {
            int hash = Hashing.murmur3_32(seed).hashBytes(key.getBytes()).asInt();
            int index = Math.abs(hash) % size;
            bitSet.set(index);
        }
    }

    public boolean lookup(String key) {
        for (int seed = 1; seed <= hashCount; seed++) {
            int hash = Hashing.murmur3_32(seed).hashBytes(key.getBytes()).asInt();
            int index = Math.abs(hash) % size;
            if (!bitSet.get(index)) return false;
        }
        return true;
    }
}

murmur哈希算法

Austin Appleby在2008年發(fā)布了一個新的散列函數——MurmurHash。其最新版本大約是lookup3速度的2倍(大約為1 byte/cycle),它有32位和64位兩個版本。32位版本只使用32位數學函數并給出一個32位的哈希值,而64位版本使用了64位的數學函數,并給出64位哈希值。根據Austin的分析,MurmurHash具有優(yōu)異的性能,雖然Bob Jenkins 在《Dr. Dobbs article》雜志上聲稱“我預測MurmurHash比起lookup3要弱,但是我不知道具體值,因為我還沒測試過它”。MurmurHash能夠迅速走紅得益于其出色的速度和統(tǒng)計特性。

guava自帶的Murmur3_32HashFunction:

final class Murmur3_32HashFunction extends AbstractStreamingHashFunction implements Serializable {
  private static final int C1 = 0xcc9e2d51;
  private static final int C2 = 0x1b873593;

  private final int seed;

  Murmur3_32HashFunction(int seed) {
    this.seed = seed;
  }

  @Override
  public int bits() {
    return 32;
  }

  @Override
  public Hasher newHasher() {
    return new Murmur3_32Hasher(seed);
  }

  @Override
  public String toString() {
    return "Hashing.murmur3_32(" + seed + ")";
  }

  @Override
  public boolean equals(@Nullable Object object) {
    if (object instanceof Murmur3_32HashFunction) {
      Murmur3_32HashFunction other = (Murmur3_32HashFunction) object;
      return seed == other.seed;
    }
    return false;
  }

  @Override
  public int hashCode() {
    return getClass().hashCode() ^ seed;
  }

  @Override
  public HashCode hashInt(int input) {
    int k1 = mixK1(input);
    int h1 = mixH1(seed, k1);

    return fmix(h1, Ints.BYTES);
  }

  @Override
  public HashCode hashLong(long input) {
    int low = (int) input;
    int high = (int) (input >>> 32);

    int k1 = mixK1(low);
    int h1 = mixH1(seed, k1);

    k1 = mixK1(high);
    h1 = mixH1(h1, k1);

    return fmix(h1, Longs.BYTES);
  }

  // TODO(kak): Maybe implement #hashBytes instead?
  @Override
  public HashCode hashUnencodedChars(CharSequence input) {
    int h1 = seed;

    // step through the CharSequence 2 chars at a time
    for (int i = 1; i < input.length(); i += 2) {
      int k1 = input.charAt(i - 1) | (input.charAt(i) << 16);
      k1 = mixK1(k1);
      h1 = mixH1(h1, k1);
    }

    // deal with any remaining characters
    if ((input.length() & 1) == 1) {
      int k1 = input.charAt(input.length() - 1);
      k1 = mixK1(k1);
      h1 ^= k1;
    }

    return fmix(h1, Chars.BYTES * input.length());
  }

  private static int mixK1(int k1) {
    k1 *= C1;
    k1 = Integer.rotateLeft(k1, 15);
    k1 *= C2;
    return k1;
  }

  private static int mixH1(int h1, int k1) {
    h1 ^= k1;
    h1 = Integer.rotateLeft(h1, 13);
    h1 = h1 * 5 + 0xe6546b64;
    return h1;
  }

  // Finalization mix - force all bits of a hash block to avalanche
  private static HashCode fmix(int h1, int length) {
    h1 ^= length;
    h1 ^= h1 >>> 16;
    h1 *= 0x85ebca6b;
    h1 ^= h1 >>> 13;
    h1 *= 0xc2b2ae35;
    h1 ^= h1 >>> 16;
    return HashCode.fromInt(h1);
  }

  private static final class Murmur3_32Hasher extends AbstractStreamingHasher {
    private static final int CHUNK_SIZE = 4;
    private int h1;
    private int length;

    Murmur3_32Hasher(int seed) {
      super(CHUNK_SIZE);
      this.h1 = seed;
      this.length = 0;
    }

    @Override
    protected void process(ByteBuffer bb) {
      int k1 = Murmur3_32HashFunction.mixK1(bb.getInt());
      h1 = Murmur3_32HashFunction.mixH1(h1, k1);
      length += CHUNK_SIZE;
    }

    @Override
    protected void processRemaining(ByteBuffer bb) {
      length += bb.remaining();
      int k1 = 0;
      for (int i = 0; bb.hasRemaining(); i += 8) {
        k1 ^= toInt(bb.get()) << i;
      }
      h1 ^= Murmur3_32HashFunction.mixK1(k1);
    }

    @Override
    public HashCode makeHash() {
      return Murmur3_32HashFunction.fmix(h1, length);
    }
  }

  private static final long serialVersionUID = 0L;
}

關于參數值

哈希函數個數k、位數組大小m、加入的字符串數量n的關系:對于給定的m、n,當 k = ln(2)* m/n 時出錯的概率是最小的。比如哈希函數個數k取10,位數組大小m設為字符串個數n的20倍時,false positive發(fā)生的概率是0.0000889。
guava提供的BloomFilter則直接提供了false positive的參數給你配置。

public static <T> BloomFilter<T> create(Funnel<? super T> funnel, long expectedInsertions) {
    return create(funnel, expectedInsertions, 0.03); // FYI, for 3%, we always get 5 hash functions
  }

doc

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發(fā)布,文章內容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,345評論 6 531
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發(fā)現死者居然都...
    沈念sama閱讀 98,494評論 3 416
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,283評論 0 374
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,953評論 1 309
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,714評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,186評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,255評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,410評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發(fā)現了一具尸體,經...
    沈念sama閱讀 48,940評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,776評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現自己被綠了。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,976評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,518評論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 44,210評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,642評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,878評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,654評論 3 391
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,958評論 2 373

推薦閱讀更多精彩內容