SVM

1.4. Support Vector Machines

支持向量機

Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection.

支持向量機是一種用于分類,回歸和異常值檢測的監督學習方式。

The advantages of support vector machines are:

SVM的優點如下:

Effective in high dimensional spaces.

在多維度空間中具有高效性。

Still effective in cases where number of dimensions is greater than the number of samples.

在特征值大于樣本數情況下仍舊高效。

Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.

在決定函數(稱為支持向量)中使用訓練集數據的一個子集,因此內存表現也高效。

Versatile: different Kernel functions can be specified for the decision function. Common kernels are provided, but it is also possible to specify custom kernels.

多功能性:可以為決定函數指定不同的核函數。提供常用的核函數,也可以指定你所習慣的核函數。

The disadvantages of support vector machines include:

缺點如下:

If the number of features is much greater than the number of samples, the method is likely to give poor performances.

如果特征值數遠遠超過樣本數,SVM性能可能不太好。

SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-validation (see Scores and probabilities, below).

SVM不直接提供概率評估,而是使用開銷五倍的交叉驗證來計算()

The support vector machines in scikit-learn support both dense (numpy.ndarray and convertible to that by numpy.asarray) and sparse (any scipy.sparse) sample vectors as input. However, to use an SVM to make predictions for sparse data, it must have been fit on such data. For optimal performance, use C-ordered numpy.ndarray (dense) or scipy.sparse.csr_matrix (sparse) with dtype=float64.


1.4.1. Classification

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容

  • 首先進入網站NIST XPS Database, Selected Element Search Menu之后 結...
    鴨梨山大哎閱讀 18,919評論 0 3
  • UIKIt:UIKit中的控件都是基于Core Graphics實現的 1.UIBezierPath:UIBezi...
    sooxie閱讀 333評論 0 0
  • 定風波 北宋 蘇軾 莫聽穿林打葉聲,何妨吟嘯且徐行。竹杖芒鞋輕勝馬,誰怕,一蓑風雨任平生。 料峭春風吹酒醒,微...
    魚落忘川閱讀 265評論 0 1
  • 老屋雖已廢棄,但每次回來,總要去看看。 年三十一早,一個人晃悠過去。一公里多路,我走了很長段時間。...
    臨去秋波閱讀 165評論 0 0
  • 一晃好多年,匆匆又夏天。 先說說我的第一個朋友,郭書成。 那時還是2009年,是我從農村家里轉到縣城六年級的時候。...
    孑孑啊閱讀 465評論 1 3