日經(jīng)題(3)

日經(jīng)題(3)

\displaystyle\int_0^1\dfrac{1}{1+x^4}\texthzis6kfx

這個題目也是日常在群里看到有人問的,其實(shí)也是比較明顯的有理代數(shù)分式的積分,只不過拆分的方法比較特殊.

類似題目:日經(jīng)題(2)

這邊我們直接求原函數(shù)

第一種方法:
對分母進(jìn)行分解
\begin{aligned} &\dfrac{1}{1+x^4}\\ =&\dfrac{1}{x^4+2x^2+1-2x^2}\\ =&\dfrac{1}{(x^2+1)^2-(\sqrt{2}x)^2}\\ =&\dfrac{1}{(x^2-\sqrt{2}x+1) (x^2+\sqrt{2}x+1)} \end{aligned}

到這里應(yīng)該已經(jīng)很明了了,只要用待定系數(shù)法分解就好了,不過還是把他補(bǔ)完整(畢竟疫情外面沒人玩)

設(shè)
\dfrac{1}{(x^2-\sqrt{2}x+1)(x^2+\sqrt{2}x+1)}=\dfrac{Ax+B}{x^2-\sqrt{2}x+1}+\dfrac{Cx+D}{x^2+\sqrt{2}x+1}

(Ax+B)(x^2+\sqrt{2}x+1)+(Cx+D)(x^2-\sqrt{2}x+1)=1\\ (A+C)x^3+(\sqrt{2}A-\sqrt{2}C+B+D)x^2+(A+\sqrt{2}B+C-\sqrt{2}D)x+(B+D)=1\\ \Rightarrow \begin{cases} A+C=0\\ \sqrt{2}A-\sqrt{2}C+B+D=0\\ A+\sqrt{2}B+C-\sqrt{2}D=0\\ B+D=1 \end{cases}\\ \Rightarrow \begin{cases} A=-C=-\dfrac{\sqrt{2}}{4}\\ B=D=\dfrac12\\ \end{cases}

\begin{aligned} &\dfrac{1}{(x^2-\sqrt{2}x+1) (x^2+\sqrt{2}x+1)}\\ =&-\dfrac{2x-\sqrt{2}}{4\sqrt{2}(x^2-\sqrt{2}x+1)}+\dfrac{2x+\sqrt{2}}{4\sqrt{2}(x^2+\sqrt{2}x+1)}\\ &+\dfrac{\sqrt{2}}{4\sqrt{2}(x^2-\sqrt{2}x+1)}+\dfrac{\sqrt{2}}{4\sqrt{2}(x^2+\sqrt{2}x+1)} \end{aligned}

\begin{aligned} &\int\dfrac{1}{1+x^4}\text1wddqpcx\\ =&\dfrac{1}{4\sqrt{2}}\left[\ln\left(\dfrac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1}\right)+2\arctan(\sqrt{2}x-1)+2\arctan(\sqrt{2}x+1)\right]+C \end{aligned}

這種方法其實(shí)還是蠻麻煩的,但是蠻好想的
下面這種方法不用麻煩的待定系數(shù)法

解法二:
對分子進(jìn)行處理
\begin{aligned} &\dfrac{1}{1+x^4}\\ =&\frac{1}{2}\left(\dfrac{x^2+1}{1+x^4}-\dfrac{x^2-1}{1+x^4}\right) \end{aligned}

\begin{aligned} &\int\dfrac{1}{1+x^4}\textfoihhdwx\\ =&\dfrac12\int\left(\dfrac{1+\frac1{x^2}}{x^2+\frac1{x^2}}-\dfrac{1-\frac1{x^2}}{x^2+\frac1{x^2}}\right)\textqtxo6i8x\\ =&\frac12\int\dfrac{\text6na6qy6(x-\frac1x)}{(x-\frac1x)^2+2}-\frac12\int\dfrac{\textwqwwnjb(x+\frac1x)}{(x+\frac1x)^2-2}\\ =&\dfrac{\sqrt{2}}{4}\int\dfrac{\textk0aqyqy(\frac{x-\frac1x}{\sqrt{2}})}{(\frac{x-\frac1x}{\sqrt{2}})^2+1}-\frac12\int\dfrac{\textitkcar9(x+\frac1x)}{(x+\frac1x)^2-2}\\ =&\dfrac{\sqrt{2}}{4}\arctan\left(\dfrac{x-\frac1x}{\sqrt{2}}\right)+\dfrac{1}{4\sqrt{2}}\ln\left(\dfrac{x^2+\sqrt{2}x+1}{x^2-\sqrt{2}x+1}\right)+C \end{aligned}

補(bǔ)充:
\arctan\alpha+\arctan\beta=\arctan\dfrac{\alpha+\beta}{1-\alpha\beta}
\arctan x+\arctan\dfrac1x=\dfrac\pi2

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。

推薦閱讀更多精彩內(nèi)容