Ubuntu16.04 && CUDA && tensorflow

0、安裝Anaconda3

下載Anaconda3-4.3.1-Linux-x86_64.sh

chmod a+x Anaconda3-4.3.1-Linux-x86_64.sh

./Anaconda3-4.3.1-Linux-x86_64.sh(默認安裝到~目錄,同時會替換原有的python2)

vim ~/.bashrc

export PATH=~/anaconda3/bin/:$PATH

一、下載Nvidia驅(qū)動

去該地址下載驅(qū)動:www.nvidia.com/Download/index.aspx

使用lspci確認顯卡型號:lspci? | grep NVIDIA

01:00.0 VGA compatible controller: NVIDIA Corporation GM107 [GeForce GTX 745] (rev a2)

NVIDIA Driver

下載即可,在~/Downloads/NVIDIA-Linux-x86_64-384.59.run可以找到下載的文件。

1、關閉x-server, sudo service lightdm stop

(提示:會關閉圖形界面,請使用ssh或者ctrl+alt+F1,我使用SSH)

2、cd ~/Downloads/ && sudo ./NVIDIA-Linux-x86_64-384.59.run

3、各種yes,然后安裝成功。

4、sudo service lightdm start 打開圖形界面。

5、執(zhí)行nvidia-setting可以查看相關信息。

三、Q&A

1、注意圖形化界面,使用sudo service lightdm stop/start

2、nouveau驅(qū)動問題:有的使用modprobe的blacklist,我試了沒成功,所以直接使用nvidia驅(qū)動替換。即 sudo apt-get install nvidia-current,然后重啟,發(fā)現(xiàn)nouveau驅(qū)動不再加載。


四、下載CUDA

去該地址https://developer.nvidia.com/cuda-downloads下載安裝即可。


CUDA

我選deb(network)因為linux下載使用瀏覽器比較慢(我ssh的機器系統(tǒng)是Kali)。

在~/Downloads/cuda-repo-ubuntu1604_8.0.61-1_amd64.deb,執(zhí)行上圖中的1,2,3即可安裝。

下面就是等待出錯了。。。(很不幸沒有出錯,但是調(diào)用deviceQuery出錯了。。。。)

安裝的目錄一般是/usr/local/cuda,在cuda/extras/demo_suite/下sudo? ./deviceQuery 提示如下:

./deviceQuery

./deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GTX 745"

CUDA Driver Version / Runtime Version? ? ? ? ? 8.0 / 8.0

CUDA Capability Major/Minor version number:? ? 5.0

Total amount of global memory:? ? ? ? ? ? ? ? 4041 MBytes (4237164544 bytes)

( 3) Multiprocessors, (128) CUDA Cores/MP:? ? 384 CUDA Cores

GPU Max Clock rate:? ? ? ? ? ? ? ? ? ? ? ? ? ? 1032 MHz (1.03 GHz)

Memory Clock rate:? ? ? ? ? ? ? ? ? ? ? ? ? ? 900 Mhz

Memory Bus Width:? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 128-bit

L2 Cache Size:? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2097152 bytes

Maximum Texture Dimension Size (x,y,z)? ? ? ? 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)

Maximum Layered 1D Texture Size, (num) layers? 1D=(16384), 2048 layers

Maximum Layered 2D Texture Size, (num) layers? 2D=(16384, 16384), 2048 layers

Total amount of constant memory:? ? ? ? ? ? ? 65536 bytes

Total amount of shared memory per block:? ? ? 49152 bytes

Total number of registers available per block: 65536

Warp size:? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 32

Maximum number of threads per multiprocessor:? 2048

Maximum number of threads per block:? ? ? ? ? 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size? ? (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch:? ? ? ? ? ? ? ? ? ? ? ? ? 2147483647 bytes

Texture alignment:? ? ? ? ? ? ? ? ? ? ? ? ? ? 512 bytes

Concurrent copy and kernel execution:? ? ? ? ? Yes with 1 copy engine(s)

Run time limit on kernels:? ? ? ? ? ? ? ? ? ? Yes

Integrated GPU sharing Host Memory:? ? ? ? ? ? No

Support host page-locked memory mapping:? ? ? Yes

Alignment requirement for Surfaces:? ? ? ? ? ? Yes

Device has ECC support:? ? ? ? ? ? ? ? ? ? ? ? Disabled

Device supports Unified Addressing (UVA):? ? ? Yes

Device PCI Domain ID / Bus ID / location ID:? 0 / 1 / 0

Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX 745

Result = PASS


五、Q&A

執(zhí)行deviceQuery出現(xiàn)(心都碎了,這是第二次裝一堆問題,第一次的時候6的不行):

./deviceQueryStarting...

CUDADeviceQuery(RuntimeAPI)version(CUDARTstaticlinking)

FATAL:Modulenvidia_uvmnotfound.

cudaGetDeviceCount returned30

->unknown error

Result=FAIL

果斷谷歌:發(fā)現(xiàn)應該是nvidia-uvm.ko的問題,dmesg提示的問題如下。

nvidia_uvm: Unknown symbol nvUvmInterfaceGetBigPageSize (err 0)

解決方法:sudo update-alternatives--config x86_64-linux-gnu_gl_conf

執(zhí)行上面的命令,選在一個。我的如圖:(估計是install nvidia-current引入的)

選擇的0

然后sudo modprobe nivdia-uvm提示ok,在執(zhí)行deviceQuery就OK了。

六 、CUDA編程

以下鏈接是共享的百度網(wǎng)盤,隨便網(wǎng)上找的CUDA編程的一點資料。

鏈接: http://pan.baidu.com/s/1slBazlN 密碼: rsmm

七、安裝cudnn??? (裝了6.0不好用。。。。。)

下載:cudnn-8.0-linux-x64-v5.1.tgz

cd /usr/local

sudo tar -zxvf /tmp/cudnn-8.0-linux-x64-v5.1.tgz?

八、環(huán)境變量設置

vim ~/.bashrc,添加如下

export CUDA_HOME=/usr/local/cuda-8.0

export PATH=/usr/local/cuda-8.0/bin:$PATH

export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64:/usr/local/cuda-8.0/extras/CUPTI/lib64:$LD_LIBRARY_PATH

九安裝Tensorflow(在線安裝)

sudo apt-get install libcupti-dev

Installing with Anaconda

Take the following steps to install TensorFlow in an Anaconda environment:

Follow the instructions on theAnaconda download siteto download and install Anaconda.

Create a conda environment namedtensorflowto run a version? ? of Python by invoking the following command:

$conda create -n tensorflow

Activate the conda environment by issuing the following command:

$source activate tensorflow(tensorflow)$? # Your prompt should change

Issue a command of the following format to install

TensorFlow inside your conda environment:

(tensorflow)$pip install --ignore-installed --upgradetfBinaryURL

wheretfBinaryURLis theURL of the TensorFlow Python package. For example, the following command installs the CPU-only version of TensorFlow for Python 2.7:

(tensorflow)$pip install --ignore-installed --upgrade \

https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-1.2.1-cp34-cp34m-linux_x86_64.w


我的是python3.6所以tfBinaryURL:https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.1-cp36-cp36m-linux_x86_64.whl

所以執(zhí)行pip install --ignore-installed --upgrade https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-1.2.1-cp36-cp36m-linux_x86_64.whl

等到執(zhí)行結束即可。

十、測試

執(zhí)行ipython,輸入以下:

import? tensorflow as tf

hello=tf.constant('Hello, TensorFlow!')

sess=tf.Session()

print(sess.run(hello))

If the system outputs the following, then you are ready to begin writing TensorFlow programs:

Hello, TensorFlow!

十一、安裝成功。

第一次寫東西,文筆low了點。。。。。。

最后編輯于
?著作權歸作者所有,轉載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內(nèi)容