elastic-job 源碼解讀之job的執行過程

?在第一篇job 的類設計結構中,已經說過job最終執行會在quartz中執行LiteJob該作業,LiteJob中怎樣去保證作業的執行的?
?再看一下LiteJob的類圖:


LiteJob.png

分析下來,job的執行過程是這張圖的樣子,比較大:


未命名文件 (3).png
public final class LiteJob implements Job {
    @Setter
    private ElasticJob elasticJob;
    @Setter
    private JobFacade jobFacade;
    
    @Override
    public void execute(final JobExecutionContext context) throws JobExecutionException {
        JobExecutorFactory.getJobExecutor(elasticJob, jobFacade).execute();
    }
}
//接上代碼獲取執行器
 public static AbstractElasticJobExecutor getJobExecutor(final ElasticJob elasticJob, final JobFacade jobFacade) {
        if (null == elasticJob) {
            return new ScriptJobExecutor(jobFacade);
        }
        if (elasticJob instanceof SimpleJob) {
            return new SimpleJobExecutor((SimpleJob) elasticJob, jobFacade);
        }
        if (elasticJob instanceof DataflowJob) {
            return new DataflowJobExecutor((DataflowJob) elasticJob, jobFacade);
        }
        throw new JobConfigurationException("Cannot support job type '%s'", elasticJob.getClass().getCanonicalName());
    }

?在執行過程中,首先會根據elasticJob的類型(也就是我們在使用elasticJob的過程中,配置的類型)去找到相應的執行器,(ScriptJobExecutor,DataflowJobExecutor,DataflowJobExecutor均實現AbstractElasticJobExecutor接口)。

//AbstractElasticJobExecutor.java 構造方法
 protected AbstractElasticJobExecutor(final JobFacade jobFacade) {
        this.jobFacade = jobFacade;
        jobRootConfig = jobFacade.loadJobRootConfiguration(true);
        jobName = jobRootConfig.getTypeConfig().getCoreConfig().getJobName();
        executorService = ExecutorServiceHandlerRegistry.getExecutorServiceHandler(jobName, (ExecutorServiceHandler) getHandler(JobProperties.JobPropertiesEnum.EXECUTOR_SERVICE_HANDLER));
        jobExceptionHandler = (JobExceptionHandler) getHandler(JobProperties.JobPropertiesEnum.JOB_EXCEPTION_HANDLER);
        itemErrorMessages = new ConcurrentHashMap<>(jobRootConfig.getTypeConfig().getCoreConfig().getShardingTotalCount(), 1);
    }

?從執行器的抽象父類構造方法看,首先會去通過jobFacade然后用configService獲取獲取job的配置,然后獲取一個執行器服務executorService(沒有就創建一個executor-service-handler,不配置走默認配置),再獲取異常處理器jobExceptionHandler(作業配置項executor-service-handler,不配置走默認配置)。

?然后看一下job的執行過程:

public final void execute() {
      try {
          //檢查環境
          jobFacade.checkJobExecutionEnvironment();
      } catch (final JobExecutionEnvironmentException cause) {
          jobExceptionHandler.handleException(jobName, cause);
      }
      //獲取分片上下文
      ShardingContexts shardingContexts = jobFacade.getShardingContexts();
      if (shardingContexts.isAllowSendJobEvent()) {
          jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_STAGING, String.format("Job '%s' execute begin.", jobName));
      }
//是否有運行中的任務
      if (jobFacade.misfireIfRunning(shardingContexts.getShardingItemParameters().keySet())) {
          if (shardingContexts.isAllowSendJobEvent()) {
              jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_FINISHED, String.format(
                      "Previous job '%s' - shardingItems '%s' is still running, misfired job will start after previous job completed.", jobName, 
                      shardingContexts.getShardingItemParameters().keySet()));
          }
          return;
      }
      try {
        //通知作業監聽對象,作業要開始執行
          jobFacade.beforeJobExecuted(shardingContexts);
          //CHECKSTYLE:OFF
      } catch (final Throwable cause) {
          //CHECKSTYLE:ON
          jobExceptionHandler.handleException(jobName, cause);
      }
      //執行邏輯
      execute(shardingContexts, JobExecutionEvent.ExecutionSource.NORMAL_TRIGGER);
      while (jobFacade.isExecuteMisfired(shardingContexts.getShardingItemParameters().keySet())) {
          jobFacade.clearMisfire(shardingContexts.getShardingItemParameters().keySet());
          execute(shardingContexts, JobExecutionEvent.ExecutionSource.MISFIRE);
      }
      jobFacade.failoverIfNecessary();
      try {
          //執行結束之后,告訴監聽器,作業執行結束
          jobFacade.afterJobExecuted(shardingContexts);
          //CHECKSTYLE:OFF
      } catch (final Throwable cause) {
          //CHECKSTYLE:ON
          jobExceptionHandler.handleException(jobName, cause);
      }
  }

?首先檢查環境,jobFacade.checkJobExecutionEnvironment();看一下服務器時間與注冊中心的時間誤差秒數是否在允許范圍,配置項:max-time-diff-seconds,-1為不校驗時間誤差,默認為-1;然后獲取分片參數:

  @Override
    public ShardingContexts getShardingContexts() {
        boolean isFailover = configService.load(true).isFailover();
        if (isFailover) {
            List<Integer> failoverShardingItems = failoverService.getLocalFailoverItems();
            if (!failoverShardingItems.isEmpty()) {
                return executionContextService.getJobShardingContext(failoverShardingItems);
            }
        }
        shardingService.shardingIfNecessary();
        List<Integer> shardingItems = shardingService.getLocalShardingItems();
        if (isFailover) {
            shardingItems.removeAll(failoverService.getLocalTakeOffItems());
        }
        shardingItems.removeAll(executionService.getDisabledItems(shardingItems));
        return executionContextService.getJobShardingContext(shardingItems);
    }

??獲取分片上下文,首先判斷是否執行failOver(失效轉移,配置項failOver,默認配置項為false)若分片失效轉移為false,則會取判斷是否需要分片,做一系列分片邏輯,這里會去加載配置項job-sharding-strategy-class分片策略類,按照策略類分配分片策略,在這里,會去選舉主節點,然后從zk更新看是否有上次任務沒有做完的情況,有的話會等到上次作業做完,然后重新分片,創建processing節點,再將禁用的分片項去除掉,如果失效轉移,則將失效轉移的分片項也去除掉。在這里,會去讀取配置配置項sharding-total-count,job-parameter, 組裝ShardingContexts。
? jobFacade.beforeJobExecuted(shardingContexts);代碼是通知監聽的listener,看代碼:

  
  @Override
    public void beforeJobExecuted(final ShardingContexts shardingContexts) {
        for (ElasticJobListener each : elasticJobListeners) {
            each.beforeJobExecuted(shardingContexts);
        }
    }

? execute(shardingContexts,JobExecutionEvent.ExecutionSource.NORMAL_TRIGGER);這個方法里,根據分片項判斷是否有分片,沒有分片項,結束掉調度的執行,如果需要向上拋出事件的,拋出已完成事件,結束任務。有分片任務的,去注冊作業啟動信息,開始執行作業,執行結束之后,將注冊信息改為結束狀態(改掉JobRegistry的狀態和zk的記錄)。

private void execute(final ShardingContexts shardingContexts, final JobExecutionEvent.ExecutionSource executionSource) {
        if (shardingContexts.getShardingItemParameters().isEmpty()) {
            if (shardingContexts.isAllowSendJobEvent()) {
                jobFacade.postJobStatusTraceEvent(shardingContexts.getTaskId(), State.TASK_FINISHED, String.format("Sharding item for job '%s' is empty.", jobName));
            }
            return;
        }
        jobFacade.registerJobBegin(shardingContexts);
        String taskId = shardingContexts.getTaskId();
        if (shardingContexts.isAllowSendJobEvent()) {
            jobFacade.postJobStatusTraceEvent(taskId, State.TASK_RUNNING, "");
        }
        try {
            process(shardingContexts, executionSource);
        } finally {
            // TODO 考慮增加作業失敗的狀態,并且考慮如何處理作業失敗的整體回路
          //注冊作業的完成
            jobFacade.registerJobCompleted(shardingContexts);
            if (itemErrorMessages.isEmpty()) {
                if (shardingContexts.isAllowSendJobEvent()) {
                    jobFacade.postJobStatusTraceEvent(taskId, State.TASK_FINISHED, "");
                }
            } else {
                //是否發送jobEvent
                if (shardingContexts.isAllowSendJobEvent()) {
                    jobFacade.postJobStatusTraceEvent(taskId, State.TASK_ERROR, itemErrorMessages.toString());
                }
            }
        }
    }

? 在registerJobBegin注冊作業啟動信息的時候,首先改了JobRegistry的作業運行狀態,JobRegistry該單例對象維護了所有job的相關信息。其次,如果監控任務執行狀態,則創建作業的臨時節點。

  /**
     * 注冊作業啟動信息.
     * 
     * @param shardingContexts 分片上下文
     */
    public void registerJobBegin(final ShardingContexts shardingContexts) {
        JobRegistry.getInstance().setJobRunning(jobName, true);
        if (!configService.load(true).isMonitorExecution()) {
            return;
        }
        for (int each : shardingContexts.getShardingItemParameters().keySet()) {
            jobNodeStorage.fillEphemeralJobNode(ShardingNode.getRunningNode(each), "");
        }
    }

?而在作業的執行過程中,如果作業只有一個分片,則直接去處理作業的請求,如果多于一個,則使用計數器,等所有分片項處理完成再去統一返回,而不是各自分片完成自己的分片任務就返回。

private void process(final ShardingContexts shardingContexts, final JobExecutionEvent.ExecutionSource executionSource) {
        Collection<Integer> items = shardingContexts.getShardingItemParameters().keySet();
        if (1 == items.size()) {
            int item = shardingContexts.getShardingItemParameters().keySet().iterator().next();
            JobExecutionEvent jobExecutionEvent =  new JobExecutionEvent(shardingContexts.getTaskId(), jobName, executionSource, item);
            process(shardingContexts, item, jobExecutionEvent);
            return;
        }
        final CountDownLatch latch = new CountDownLatch(items.size());
        for (final int each : items) {
            final JobExecutionEvent jobExecutionEvent = new JobExecutionEvent(shardingContexts.getTaskId(), jobName, executionSource, each);
            if (executorService.isShutdown()) {
                return;
            }
            executorService.submit(new Runnable() {
                
                @Override
                public void run() {
                    try {
                        process(shardingContexts, each, jobExecutionEvent);
                    } finally {
                        latch.countDown();
                    }
                }
            });
        }
        try {
            latch.await();
        } catch (final InterruptedException ex) {
            Thread.currentThread().interrupt();
        }
    }

作業請求的處理,會去調用AbstractElasticJobExecutor的process方法,在這個方法里,會直接調用三種基本類型的job的execute方法,也就是我們定義job bean的方法,具體看下面代碼:


private void process(final ShardingContexts shardingContexts, final int item, final JobExecutionEvent startEvent) {
        if (shardingContexts.isAllowSendJobEvent()) {
            jobFacade.postJobExecutionEvent(startEvent);
        }
        log.trace("Job '{}' executing, item is: '{}'.", jobName, item);
        JobExecutionEvent completeEvent;
        try {
            //在這里會直接調用三種基本任務的execute方法,
            //該process方法執行的是 AbstractElasticJobExecutor
            //的process抽象方法,具體的實現類可看下面代碼 
            process(new ShardingContext(shardingContexts, item));
            completeEvent = startEvent.executionSuccess();
            log.trace("Job '{}' executed, item is: '{}'.", jobName, item);
            if (shardingContexts.isAllowSendJobEvent()) {
                jobFacade.postJobExecutionEvent(completeEvent);
            }
            // CHECKSTYLE:OFF
        } catch (final Throwable cause) {
            // CHECKSTYLE:ON
            completeEvent = startEvent.executionFailure(cause);
            jobFacade.postJobExecutionEvent(completeEvent);
            itemErrorMessages.put(item, ExceptionUtil.transform(cause));
            jobExceptionHandler.handleException(jobName, cause);
        }
    }

//AbstractElasticJobExecutor的實現類
  public final class SimpleJobExecutor extends AbstractElasticJobExecutor {
    
    private final SimpleJob simpleJob;
    
    public SimpleJobExecutor(final SimpleJob simpleJob, final JobFacade jobFacade) {
        super(jobFacade);
        this.simpleJob = simpleJob;
    }
    //process方法實質會調用三種基本任務的execute方法,就是我們配置的作業的執行方法。
    @Override
    protected void process(final ShardingContext shardingContext) {
        simpleJob.execute(shardingContext);
    }
}

jobFacade.failoverIfNecessary();作業執行完成之后,判斷是否需要失效轉移,再然后 jobFacade.afterJobExecuted(shardingContexts);通知監聽的Listenter改作業執行完成。

 @Override
    public void afterJobExecuted(final ShardingContexts shardingContexts) {
        for (ElasticJobListener each : elasticJobListeners) {
            each.afterJobExecuted(shardingContexts);
        }
    }
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容