Rxjava2源碼淺析(二)

上一篇文章:Rxjava2源碼淺析(一)
分析了最基礎的一套流程,今天呢就略加一些常用的操作吧。

使用范例
上次我們在建立關系的時候就是這樣光禿禿的一句話

observable.subscribe(observer);

這在平時使用的時候顯然是不夠用的,Rxjava的優勢是什么?切換線程肯定要算一個啊,所以我們看一下下面這種使用方法。

observable.subscribeOn(Schedulers.newThread())
          .observeOn(AndroidSchedulers.mainThread())
          .subscribe(observer);
                

這樣就完成了在newThread中運行被觀察者,在主線程中觀察。下面就進入源碼時間了~
先從參數開始看起:

public static Scheduler newThread() {
        return RxJavaPlugins.onNewThreadScheduler(NEW_THREAD);
    }

然后又調用了

@NonNull
    public static Scheduler onNewThreadScheduler(@NonNull Scheduler defaultScheduler) {
        Function<? super Scheduler, ? extends Scheduler> f = onNewThreadHandler;
        if (f == null) {
            return defaultScheduler;
        }
        return apply(f, defaultScheduler);
    }

這里的onNewThreadHandler又是什么呢?

static volatile Function<? super Scheduler, ? extends Scheduler> onNewThreadHandler;

可以看到是一個類型轉換的Funtion<>,暫時不用去管它,因為現在肯定是為空的,所以就會返回我們傳進去的defaultScheduler也就是NEW_THREAD,這個是Schedulers內的一個變量

static final Scheduler NEW_THREAD;

這個NEW_THREAD又是什么呢?跟蹤它在Schedulers內部的調用。

NEW_THREAD = RxJavaPlugins.initNewThreadScheduler(new Callable<Scheduler>() {
            @Override
            public Scheduler call() throws Exception {
                return NewThreadHolder.DEFAULT;
            }
        });

發現了有個static字段內部對它進行了初始化操作。
還是從參數開始分析,發現這是一個Callable對象,和Runable大同小異不過可以返回結果,這里就在call方法中返回了一個Scheduler對象NewThreadHolder.DEFAULT

static final class NewThreadHolder {
        static final Scheduler DEFAULT = new NewThreadScheduler();
    }

這里就將創建線程的任務從Schedulers移到了NewThreadScheduler

static {
        int priority = Math.max(Thread.MIN_PRIORITY,        Math.min(Thread.MAX_PRIORITY,
        Integer.getInteger(KEY_NEWTHREAD_PRIORITY,Thread.NORM_PRIORITY)));
        THREAD_FACTORY = new RxThreadFactory(THREAD_NAME_PREFIX, priority);
 }
    
private static final RxThreadFactory THREAD_FACTORY;

public NewThreadScheduler() {
        this(THREAD_FACTORY);
}
    
public NewThreadScheduler(ThreadFactory threadFactory) {
        this.threadFactory = threadFactory;
}

我們看到NewThreadScheduler初始化中還包含著RxThreadFactory的初始化,至于它的作用到現在還不得而知,暫且擱置,回到主方法中。接著從從subscribeon開始分析:

public final Observable<T> subscribeOn(Scheduler scheduler) {
        ObjectHelper.requireNonNull(scheduler, "scheduler is null");
        return RxJavaPlugins.onAssembly(new ObservableSubscribeOn<T>(this, scheduler));
    }

上來第一行還是老樣子先進行非空判斷,然后第二行這個我們是不是也看著很眼熟呢?沒錯。。。

public static <T> Observable<T> create(ObservableOnSubscribe<T> source) {
        ObjectHelper.requireNonNull(source, "source is null");
        return RxJavaPlugins.onAssembly(new ObservableCreate<T>(source));
    }

這跟第一個步驟中的create長的簡直一模一樣。所以重點就來到了

new ObservableSubscribeOn<T>(this, scheduler)

該方法為:

public ObservableSubscribeOn(ObservableSource<T> source, Scheduler scheduler) {
        super(source);
        this.scheduler = scheduler;
    }

暫時沒啥好說的。。。先跳過。。。
subscribeon就先擱置一下,
然后看observeron,參數就不分析了,和subscribeon的流程大同小異,唯一不同的就是其中是通過Looper.getMainLooper()來得到主線程的。后面有機會的話也會專門來寫一篇文章記錄一下自己關于Looper和Handler的線程和消息機制的學習。

@CheckReturnValue
@SchedulerSupport(SchedulerSupport.CUSTOM)
public final Observable<T> observeOn(Scheduler scheduler) {
    return observeOn(scheduler, false, bufferSize());
}

這里的buffersize

public static int bufferSize() {
        return Flowable.bufferSize();
}
 public static int bufferSize() {
        return BUFFER_SIZE;
 }
static final int BUFFER_SIZE;
static {
        BUFFER_SIZE = Math.max(16, Integer.getInteger("rx2.buffer-size", 128));
    }

可以看到這個buffersize就是一個緩沖區的大小,一個int類型的參數,不過和flowable牽扯在了一起,這個flowable也是Rxjava2的新特性--背壓,這里先不多講了,都放到后面的文章來說。主要來看這個observeon

public final Observable<T> observeOn(Scheduler scheduler, boolean delayError, int bufferSize) {
        ObjectHelper.requireNonNull(scheduler, "scheduler is null");
        ObjectHelper.verifyPositive(bufferSize, "bufferSize");
        return RxJavaPlugins.onAssembly(new ObservableObserveOn<T>(this, scheduler, delayError, bufferSize));
}

它的前兩行

ObjectHelper.requireNonNull(scheduler, "scheduler is null");
ObjectHelper.verifyPositive(bufferSize, "bufferSize");

都是驗證合理性的。第一行出現很多次就不用說了。第二行

public static int verifyPositive(int value, String paramName) {
        if (value <= 0) {
            throw new IllegalArgumentException(paramName + " > 0 required but it was " + value);
        }
        return value;
    }

就是說我們的buffersize一定要是一個正數,這也是合情合理且應該的。
然后就又看到我們的老朋友了RxJavaPlugins.onAssembly。。。

我們前面的分析也有了經驗,所以這里會return 里面的參數 new ObservableObserveOn< T >(this, scheduler, delayError, bufferSize)向上轉型為一個Observable,之前也分析過,
ObservableObserveOn < T > 中會重寫


    @Override
    protected void subscribeActual(Observer<? super T> observer) {
        if (scheduler instanceof TrampolineScheduler) {
            source.subscribe(observer);
        } else {
            Scheduler.Worker w = scheduler.createWorker();

            source.subscribe(new ObserveOnObserver<T>(observer, w, delayError, bufferSize));
        }
    }

這里的scheduler.createWorker是AndroidScheduler.MainThread

@Override
public Worker createWorker() {
    return new HandlerWorker(handler);
}

而這個createWork()

@Override
    public Worker createWorker() {
        return new HandlerWorker(handler);
    }

    private static final class HandlerWorker extends Worker {
        private final Handler handler;

        private volatile boolean disposed;

        HandlerWorker(Handler handler) {
            this.handler = handler;
        }

        @Override
        public Disposable schedule(Runnable run, long delay, TimeUnit unit) {
            if (run == null) throw new NullPointerException("run == null");
            if (unit == null) throw new NullPointerException("unit == null");

            if (disposed) {
                return Disposables.disposed();
            }

            run = RxJavaPlugins.onSchedule(run);

            ScheduledRunnable scheduled = new ScheduledRunnable(handler, run);

            Message message = Message.obtain(handler, scheduled);
            message.obj = this; // Used as token for batch disposal of this worker's runnables.

            handler.sendMessageDelayed(message, Math.max(0L, unit.toMillis(delay)));

            // Re-check disposed state for removing in case we were racing a call to dispose().
            if (disposed) {
                handler.removeCallbacks(scheduled);
                return Disposables.disposed();
            }

            return scheduled;
        }

        @Override
        public void dispose() {
            disposed = true;
            handler.removeCallbacksAndMessages(this /* token */);
        }

        @Override
        public boolean isDisposed() {
            return disposed;
        }
    }

在new ObserveOnObserver< T >(observer, w, delayError, bufferSize)中,我們就選兩個方法來看一下就可以了

@Override
        public void onSubscribe(Disposable s) {
            if (DisposableHelper.validate(this.s, s)) {
                this.s = s;
                if (s instanceof QueueDisposable) {
                    @SuppressWarnings("unchecked")
                    QueueDisposable<T> qd = (QueueDisposable<T>) s;

                    int m = qd.requestFusion(QueueDisposable.ANY | QueueDisposable.BOUNDARY);

                    if (m == QueueDisposable.SYNC) {
                        sourceMode = m;
                        queue = qd;
                        done = true;
                        actual.onSubscribe(this);
                        schedule();
                        return;
                    }
                    if (m == QueueDisposable.ASYNC) {
                        sourceMode = m;
                        queue = qd;
                        actual.onSubscribe(this);
                        return;
                    }
                }

                queue = new SpscLinkedArrayQueue<T>(bufferSize);

                actual.onSubscribe(this);
            }
        }

        @Override
        public void onNext(T t) {
            if (done) {
                return;
            }

            if (sourceMode != QueueDisposable.ASYNC) {
                queue.offer(t);
            }
            schedule();
        }

其中的schedule方法比較重要

 void schedule() {
            if (getAndIncrement() == 0) {
                worker.schedule(this);
            }
        }

而這個schedule

@NonNull
public Disposable schedule(@NonNull Runnable run) {
        return schedule(run, 0L, TimeUnit.NANOSECONDS);
}

就調用了之前的HandlerScheduler里面的schedule方法

@Override
        public Disposable schedule(Runnable run, long delay, TimeUnit unit) {
            if (run == null) throw new NullPointerException("run == null");
            if (unit == null) throw new NullPointerException("unit == null");

            if (disposed) {
                return Disposables.disposed();
            }

            run = RxJavaPlugins.onSchedule(run);

            ScheduledRunnable scheduled = new ScheduledRunnable(handler, run);

            Message message = Message.obtain(handler, scheduled);
            message.obj = this; // Used as token for batch disposal of this worker's runnables.

            handler.sendMessageDelayed(message, Math.max(0L, unit.toMillis(delay)));

            // Re-check disposed state for removing in case we were racing a call to dispose().
            if (disposed) {
                handler.removeCallbacks(scheduled);
                return Disposables.disposed();
            }

            return scheduled;
        }

其中

run = RxJavaPlugins.onSchedule(run);

ScheduledRunnable scheduled = new ScheduledRunnable(handler, run);

Message message = Message.obtain(handler, scheduled);
message.obj = this; 
// Used as token for batch disposal of this worker's runnables.

handler.sendMessageDelayed(message, Math.max(0L, unit.toMillis(delay)));

就完成了在MainThread中的觀察,因為我們的handler就是剛剛new Handler()的時候傳入了Looper.getMainLooper()。
至于subscribeon是如何切換線程的。。還沒看出來。。明天再說吧。。。

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容