該資源的github地址:Qix
介紹:部分中文列表
《機器學習經典算法詳解及Python實現--基于SMO的SVM分類器》
介紹:此外作者還有一篇元算法、AdaBoost python實現文章
《Numerical Optimization: Understanding L-BFGS》
介紹:加州伯克利大學博士Aria Haghighi寫了一篇超贊的數值優化博文,從牛頓法講到擬牛頓法,再講到BFGS以及L-BFGS, 圖文并茂,還有偽代碼。強烈推薦。
介紹:還有續集簡明深度學習方法概述(二)
介紹:R語言程序員私人定制版
介紹:谷歌地圖解密
介紹:空間數據挖掘常用方法
《Use Google's Word2Vec for movie reviews》
介紹:Kaggle新比賽 ”When bag of words meets bags of popcorn“ aka ”邊學邊用word2vec和deep learning做NLP“ 里面全套教程教一步一步用python和gensim包的word2vec模型,并在實際比賽里面比調參數和清數據。 如果已裝過gensim不要忘升級
介紹:PyNLPIR提供了NLPIR/ICTCLAS漢語分詞的Python接口,此外Zhon提供了常用漢字常量,如CJK字符和偏旁,中文標點,拼音,和漢字正則表達式(如找到文本中的繁體字)
介紹:這文章說把最近模型識別上的突破應用到圍棋軟件上,打16萬張職業棋譜訓練模型識別功能。想法不錯。訓練后目前能做到不用計算,只看棋盤就給出下一步,大約10級棋力。但這篇文章太過樂觀,說什么人類的最后一塊堡壘馬上就要跨掉了。話說得太早。不過,如果與別的軟件結合應該還有潛力可挖。@萬精油墨綠
介紹:UT Austin教授Eric Price關于今年NIPS審稿實驗的詳細分析,他表示,根據這次實驗的結果,如果今年NIPS重新審稿的話,會有一半的論文被拒。
介紹:KDNuggets分別總結了2014年14個閱讀最多以及分享最多的文章。我們從中可以看到多個主題——深度學習,數據科學家職業,教育和薪酬,學習數據科學的工具比如R和Python以及大眾投票的最受歡迎的數據科學和數據挖掘語言
《機器學習經典算法詳解及Python實現--線性回歸(Linear Regression)算法》
介紹:Python實現線性回歸,作者還有其他很棒的文章推薦可以看看
介紹:2014中國大數據技術大會33位核心專家演講PDF下載
介紹:這是T. Mikolov & Y. Bengio最新論文Ensemble of Generative and Discriminative Techniques for Sentiment Analysis of Movie Reviews ,使用RNN和PV在情感分析效果不錯,[項目代碼](https://github.com/mesnilgr/iclr15)公布在github(目前是空的)。這意味著ParagraphVector終于揭開面紗了嘛。
《NLPIR/ICTCLAS2015分詞系統大會上的技術演講 》
介紹:NLPIR/ICTCLAS2015分詞系統發布與用戶交流大會上的演講,請更多朋友檢閱新版分詞吧。 我們實驗室同學的演講包括:孫夢姝-基于評論觀點挖掘的商品搜索技術研究李然-主題模型
介紹:Convex Neural Networks 解決維數災難
介紹:介紹CNN參數在使用bp算法時該怎么訓練,畢竟CNN中有卷積層和下采樣層,雖然和MLP的bp算法本質上相同,但形式上還是有些區別的,很顯然在完成CNN反向傳播前了解bp算法是必須的。此外作者也做了一個資源集:機器學習,深度學習,視覺,數學等
介紹:如果要在一篇文章中匹配十萬個關鍵詞怎么辦?Aho-Corasick算法利用添加了返回邊的Trie樹,能夠在線性時間內完成匹配。 但如果匹配十萬個正則表達式呢 ? 這時候可以用到把多個正則優化成Trie樹的方法,如日本人寫的Regexp::Trie
介紹:深度學習閱讀清單
介紹:Caffe是一個開源的深度學習框架,作者目前在google工作,作者主頁Yangqing Jia (賈揚清)
介紹:2014 ImageNet冠軍GoogLeNet深度學習模型的Caffe復現模型,GoogleNet論文.
《LambdaNet,Haskell實現的開源人工神經網絡庫 》
介紹:LambdaNetLambdaNet是由Haskell實現的一個開源的人工神經網絡庫,它抽象了網絡創建、訓練并使用了高階函數。該庫還提供了一組預定義函數,用戶可以采取多種方式組合這些函數來操作現實世界數據。
介紹:如果你從事互聯網搜索,在線廣告,用戶行為分析,圖像識別,自然語言理解,或者生物信息學,智能機器人,金融預測,那么這門核心課程你必須深入了解。
介紹:"人工智能研究分許多流派。其中之一以IBM為代表,認為只要有高性能計算就可得到智能,他們的‘深藍’擊敗了世界象棋冠軍;另一流派認為智能來自動物本能;還有個很強的流派認為只要找來專家,把他們的思維用邏輯一條條寫下,放到計算機里就行……" 楊強在TEDxNanjing談智能的起源
《深度RNN/LSTM用于結構化學習 0)序列標注Connectionist Temporal ClassificationICML06》
介紹:1)機器翻譯Sequence to Sequence NIPS142)成分句法GRAMMAR AS FOREIGN LANGUAGE
介紹:網易有道的三位工程師寫的word2vec的解析文檔,從基本的詞向量/統計語言模型->NNLM->Log-Linear/Log-Bilinear->層次化Log-Bilinear,到CBOW和Skip-gram模型,再到word2vec的各種tricks,公式推導與代碼,基本上是網上關于word2vec資料的大合集,對word2vec感興趣的朋友可以看看
《Machine learning open source software》
介紹:機器學習開源軟件,收錄了各種機器學習的各種編程語言學術與商業的開源軟件.與此類似的還有很多例如:DMOZ - Computers: Artificial Intelligence: Machine Learning: Software,LIBSVM -- A Library for Support Vector Machines,Weka 3: Data Mining Software in Java,scikit-learn:Machine Learning in Python,Natural Language Toolkit:NLTK,MAchine Learning for LanguagE Toolkit,Data Mining - Fruitful and Fun,Open Source Computer Vision Library
介紹:作者是計算機研二(寫文章的時候,現在是2015年了應該快要畢業了),專業方向自然語言處理.這是一點他的經驗之談.對于入門的朋友或許會有幫助
《A Tour of Machine Learning Algorithms》
介紹:這是一篇關于機器學習算法分類的文章,非常好
介紹:機器學習日報里面推薦很多內容,在這里有一部分的優秀內容就是來自機器學習日報.
《 Image classification with deep learning常用模型》
介紹:這是一篇關于圖像分類在深度學習中的文章
介紹:作者與Bengio的兄弟Samy 09年合編《自動語音識別:核方法》 3)李開復1989年《自動語音識別》專著,其博導、94年圖靈獎得主Raj Reddy作序
介紹: 作者是360電商技術組成員,這是一篇NLP在中文分詞中的應用
《Using convolutional neural nets to detect facial keypoints tutorial》
介紹: 使用deep learning的人臉關鍵點檢測,此外還有一篇AWS部署教程
《書籍推薦:Advanced Structured Prediction》
介紹: 由Sebastian Nowozin等人編纂MIT出版的新書《Advanced Structured Prediction》http://t.cn/RZxipKG,匯集了結構化預測領域諸多牛文,涉及CV、NLP等領域,值得一讀。網上公開的幾章草稿:一,二,三,四,五
《An Introduction to Matrix Concentration Inequalities》
介紹: Tropp把數學家用高深裝逼的數學語言寫的矩陣概率不等式用初等的方法寫出來,是非常好的手冊,領域內的paper各種證明都在用里面的結果。雖說是初等的,但還是非常的難
《The free big data sources you should know》
介紹: 不容錯過的免費大數據集,有些已經是耳熟能詳,有些可能還是第一次聽說,內容跨越文本、數據、多媒體等,讓他們伴你開始數據科學之旅吧,具體包括:Data.gov、US Census Bureau、European Union Open Data Portal、Data.gov.uk等
《A Brief Overview of Deep Learning》
介紹: 谷歌科學家、Hinton親傳弟子Ilya Sutskever的深度學習綜述及實際建議
《A Deep Dive into Recurrent Neural Nets》
介紹: 非常好的討論遞歸神經網絡的文章,覆蓋了RNN的概念、原理、訓練及優化等各個方面內容,強烈推薦!本文作者Nikhil Buduma還有一篇Deep Learning in a Nutshell值得推薦
介紹:里面融合了很多的資源,例如競賽,在線課程,demo,數據整合等。有分類