轉-SVD在推薦系統中的應用

http://blog.csdn.net/syani/article/details/52297093
mahout中有SVD的推薦策略,今天查了一下資料了解了一下算法原理,本質上是使用SVD方法做特征降維,然后再計算相似度。下面這篇文章寫的不錯,和大家分享一下。

轉自:http://yanyiwu.com/work/2012/09/10/SVD-application-in-recsys.html

線性代數相關知識:

任意一個M*N的矩陣A(M行*N列M>N),可以被寫成三個矩陣的乘積:

1. U:(M行M列的列正交矩陣)

2. S:(M*N的對角線矩陣,矩陣元素非負)

3. V:(N*N的正交矩陣的倒置)

A=U*S*V'(注意矩陣V需要倒置)

直觀地說:

假設我們有一個矩陣,該矩陣每一列代表一個user,每一行代表一個item。

[圖片上傳失敗...(image-82f708-1520412554755)]

如上圖,ben,tom….代表user,season n代表item

矩陣值代表評分(0代表未評分):

如 ben對season1評分為5,tom對season1 評分為5,tom對season2未評分。

機器學習和信息檢索:

機器學習的一個最根本也是最有趣的特性是數據壓縮概念的相關性。

如果我們能夠從數據中抽取某些有意義的感念,則我們能用更少的比特位來表述這個數據。

從信息論的角度則是數據之間存在相關性,則有可壓縮性。

SVD就是用來將一個大的矩陣以降低維數的方式進行有損地壓縮。

降維:(相對于機器學習中的PCA)

下面我們將用一個具體的例子展示svd的具體過程。

首先是A矩陣。

<pre style="margin: 0px 0px 24px; padding: 0px; font-weight: 400; box-sizing: border-box; background-color: rgb(240, 240, 240); font-family: Consolas, Inconsolata, Courier, monospace; font-size: 14px; line-height: 22px; color: rgb(0, 0, 0);">`A =

 5     5     0     5
 5     0     3     4
 3     4     0     3
 0     0     5     3
 5     4     4     5
 5     4     5     5` </pre>

(代表上圖的評分矩陣)

使用matlab調用svd函數:

<pre style="margin: 0px 0px 24px; padding: 0px; font-weight: 400; box-sizing: border-box; background-color: rgb(240, 240, 240); font-family: Consolas, Inconsolata, Courier, monospace; font-size: 14px; line-height: 22px; color: rgb(0, 0, 0);">`[U,S,Vtranspose]=svd(A)

U =
-0.4472 -0.5373 -0.0064 -0.5037 -0.3857 -0.3298
-0.3586 0.2461 0.8622 -0.1458 0.0780 0.2002
-0.2925 -0.4033 -0.2275 -0.1038 0.4360 0.7065
-0.2078 0.6700 -0.3951 -0.5888 0.0260 0.0667
-0.5099 0.0597 -0.1097 0.2869 0.5946 -0.5371
-0.5316 0.1887 -0.1914 0.5341 -0.5485 0.2429

S =
17.7139 0 0 0
0 6.3917 0 0
0 0 3.0980 0
0 0 0 1.3290
0 0 0 0
0 0 0 0

Vtranspose =
-0.5710 -0.2228 0.6749 0.4109
-0.4275 -0.5172 -0.6929 0.2637
-0.3846 0.8246 -0.2532 0.3286
-0.5859 0.0532 0.0140 -0.8085` </pre>

分解矩陣之后我們首先需要明白S的意義。

可以看到S很特別,是個對角線矩陣。

每個元素非負,而且依次減小,從幾何意義上來說,此值和特征向量中的特征值的權重有關。

[html] view plaincopy

<embed id="ZeroClipboardMovie_1" src="http://csdnimg.cn/public/highlighter/ZeroClipboard.swf" loop="false" menu="false" quality="best" bgcolor="#ffffff" width="16" height="16" name="ZeroClipboardMovie_1" align="middle" allowscriptaccess="always" allowfullscreen="false" type="application/x-shockwave-flash" pluginspage="http://www.macromedia.com/go/getflashplayer" flashvars="id=1&width=16&height=16" wmode="transparent" style="box-sizing: border-box;">

  1. <span style="font-size:14px;">若想進一步了解<span style="color:#FF0000;"><strong>SVD分解</strong></span>,推薦讀下面這篇文章:

  2. <strong>機器學習中的數學(5)-強大的矩陣奇異值分解(SVD)及其應用</strong>

  3. http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html</span>

所以可以取S對角線上前k個元素。

當k=2時候即將S(6*4)降維成S(2*2)

同時U(6*6),Vtranspose(4*4)相應地變為 U(6*2),Vtranspose(4*2).

如下圖(圖片里的usv矩陣元素值和我自己matlab算出的usv矩陣元素值有些正負不一致,但是本質是相同的):

[圖片上傳失敗...(image-b66b14-1520412554753)]

此時我們用降維后的U,S,V來相乘得到A2

<pre style="margin: 0px 0px 24px; padding: 0px; font-weight: 400; box-sizing: border-box; background-color: rgb(240, 240, 240); font-family: Consolas, Inconsolata, Courier, monospace; font-size: 14px; line-height: 22px; color: rgb(0, 0, 0);">A2=U(1:6,1:2)*S(1:2,1:2)*(V(1:4,1:2))' //matlab語句 </pre>

<pre style="margin: 0px 0px 24px; padding: 0px; font-weight: 400; box-sizing: border-box; background-color: rgb(240, 240, 240); font-family: Consolas, Inconsolata, Courier, monospace; font-size: 14px; line-height: 22px; color: rgb(0, 0, 0);">`A2 =

5.2885    5.1627    0.2149    4.4591
3.2768    1.9021    3.7400    3.8058
3.5324    3.5479   -0.1332    2.8984
1.1475   -0.6417    4.9472    2.3846
5.0727    3.6640    3.7887    5.3130
5.1086    3.4019    4.6166    5.5822` </pre>

此時我們可以很直觀地看出,A2和A很接近,這就是之前說的降維可以看成一種數據的有損壓縮。

接下來我們開始分析該矩陣中數據的相關性

我們將u的第一列當成x值,第二列當成y值(即u的每一行用一個二維向量表示)

同理,v的每一行也用一個二維向量表示。

如下圖:

[圖片上傳失敗...(image-7a84c9-1520412554753)]

從圖中可以看出:

Season5,Season6特別靠近。Ben和Fred也特別靠近。

同時我們仔細看一下A矩陣可以發現,A矩陣的第5行向量和第6行向量特別相似,Ben所在的列向量和Fred所在的列向量也特別相似。

所以,從直觀上我們發現,U矩陣和V矩陣可以近似來代表A矩陣,換據話說就是將A矩陣壓縮成U矩陣和V矩陣,至于壓縮比例得看當時對S矩陣取前k個數的k值是多少。

到這里,我們已經完成了一半。

尋找相似用戶

我們假設,現在有個名字叫Bob的新用戶,并且已知這個用戶對season n的評分向量為:[5 5 0 0 0 5]。(此向量為行向量)

我們的任務是要對他做出個性化的推薦。

我們的思路首先是利用新用戶的評分向量找出該用戶的相似用戶。

[圖片上傳失敗...(image-c7b306-1520412554753)]

對圖中公式不做證明,只需要知道結論:得到一個Bob的二維向量,即知道Bob的坐標。(本質上是特征的降維轉換)

將Bob坐標添加進原來的圖中:

[圖片上傳失敗...(image-f23c97-1520412554753)]

然后從圖中找出和Bob最相似的用戶。

注意,最相似并不是距離最近的用戶,這里的相似用余弦相似度計算,即夾角與Bob最小的用戶坐標,可以計算出最相似的用戶是ben。

接下來的推薦策略就完全取決于個人選擇了。

這里介紹一個非常簡單的推薦策略:

找出最相似的用戶,即ben。

觀察ben的評分向量為:【5 5 3 0 5 5】。

對比Bob的評分向量:【5 5 0 0 0 5】。

然后找出ben評分過而Bob未評分的item并排序,即【season 5:5,season 3:3】。

即推薦給Bob的item依次為 season5 和 season3。

最后還有一些關于整個推薦思路的可改進的地方:

1.svd本身就是時間復雜度高的計算過程,如果數據量大的情況恐怕時間消耗無法忍受。不過可以使用梯度下降等機器學習的相關方法來進行近似計算,以減少時間消耗。

2.相似度計算方法的選擇,有多種相似度計算方法,每種都有對應優缺點,對針對不同場景使用最適合的相似度計算方法。

3.推薦策略:首先是相似用戶可以多個,每個由相似度作為權重來共同影響推薦的item的評分。

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。