cnn

import numpy as np

from cs231n.layers import *

from cs231n.fast_layers import *

from cs231n.layer_utils import *

class ThreeLayerConvNet(object):

"""

A three-layer convolutional network with the following architecture:

conv - relu - 2x2 max pool - affine - relu - affine - softmax

The network operates on minibatches of data that have shape (N, C, H, W)

consisting of N images, each with height H and width W and with C input

channels.

"""

def __init__(self, input_dim=(3, 32, 32), num_filters=32, filter_size=7,

hidden_dim=100, num_classes=10, weight_scale=1e-3, reg=0.0,

dtype=np.float32):

"""

Initialize a new network.

Inputs:

- input_dim: Tuple (C, H, W) giving size of input data

- num_filters: Number of filters to use in the convolutional layer

- filter_size: Size of filters to use in the convolutional layer

- hidden_dim: Number of units to use in the fully-connected hidden layer

- num_classes: Number of scores to produce from the final affine layer.

- weight_scale: Scalar giving standard deviation for random initialization

of weights.

- reg: Scalar giving L2 regularization strength

- dtype: numpy datatype to use for computation.

"""

self.params = {}

self.reg = reg

self.dtype = dtype

############################################################################

# TODO: Initialize weights and biases for the three-layer convolutional? ? #

# network. Weights should be initialized from a Gaussian with standard? ? #

# deviation equal to weight_scale; biases should be initialized to zero.? #

# All weights and biases should be stored in the dictionary self.params.? #

# Store weights and biases for the convolutional layer using the keys 'W1' #

# and 'b1'; use keys 'W2' and 'b2' for the weights and biases of the? ? ? #

# hidden affine layer, and keys 'W3' and 'b3' for the weights and biases? #

# of the output affine layer.? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? #

############################################################################

C, H, W = input_dim

self.params['W1'] = weight_scale * np.random.randn(num_filters, C, filter_size, filter_size)

self.params['b1'] = np.zeros(num_filters)

self.params['W2'] = weight_scale * np.random.randn((H / 2)*(W / 2)*num_filters, hidden_dim)

self.params['b2'] = np.zeros(hidden_dim)

self.params['W3'] = weight_scale * np.random.randn(hidden_dim, num_classes)

self.params['b3'] = np.zeros(num_classes)

#pass

############################################################################

#? ? ? ? ? ? ? ? ? ? ? ? ? ? END OF YOUR CODE? ? ? ? ? ? ? ? ? ? ? ? ? ? #

############################################################################

for k, v in self.params.iteritems():

self.params[k] = v.astype(dtype)

def loss(self, X, y=None):

"""

Evaluate loss and gradient for the three-layer convolutional network.

Input / output: Same API as TwoLayerNet in fc_net.py.

"""

W1, b1 = self.params['W1'], self.params['b1']

W2, b2 = self.params['W2'], self.params['b2']

W3, b3 = self.params['W3'], self.params['b3']

# pass conv_param to the forward pass for the convolutional layer

filter_size = W1.shape[2]

conv_param = {'stride': 1, 'pad': (filter_size - 1) / 2}

# pass pool_param to the forward pass for the max-pooling layer

pool_param = {'pool_height': 2, 'pool_width': 2, 'stride': 2}

scores = None

############################################################################

# TODO: Implement the forward pass for the three-layer convolutional net,? #

# computing the class scores for X and storing them in the scores? ? ? ? ? #

# variable.? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? #

############################################################################

conv_forward_out_1, cache_forward_1 = conv_relu_pool_forward(X, self.params['W1'], self.params['b1'], conv_param, pool_param)

affine_forward_out_2, cache_forward_2 = affine_forward(conv_forward_out_1, self.params['W2'], self.params['b2'])

affine_relu_2, cache_relu_2 = relu_forward(affine_forward_out_2)

scores, cache_forward_3 = affine_forward(affine_relu_2, self.params['W3'], self.params['b3'])

#pass

############################################################################

#? ? ? ? ? ? ? ? ? ? ? ? ? ? END OF YOUR CODE? ? ? ? ? ? ? ? ? ? ? ? ? ? #

############################################################################

if y is None:

return scores

loss, grads = 0, {}

############################################################################

# TODO: Implement the backward pass for the three-layer convolutional net, #

# storing the loss and gradients in the loss and grads variables. Compute? #

# data loss using softmax, and make sure that grads[k] holds the gradients #

# for self.params[k]. Don't forget to add L2 regularization!? ? ? ? ? ? ? #

############################################################################

loss, dout = softmax_loss(scores, y)

# Add regularization

loss += self.reg * 0.5 * (np.sum(self.params['W1'] ** 2) + np.sum(self.params['W2'] ** 2) + np.sum(self.params['W3'] ** 2))

dX3, grads['W3'], grads['b3'] = affine_backward(dout, cache_forward_3)

dX2 = relu_backward(dX3, cache_relu_2)

dX2, grads['W2'], grads['b2'] = affine_backward(dX2, cache_forward_2)

dX1, grads['W1'], grads['b1'] = conv_relu_pool_backward(dX2, cache_forward_1)

grads['W3'] = grads['W3'] + self.reg * self.params['W3']

grads['W2'] = grads['W2'] + self.reg * self.params['W2']

grads['W1'] = grads['W1'] + self.reg * self.params['W1']

#pass

############################################################################

#? ? ? ? ? ? ? ? ? ? ? ? ? ? END OF YOUR CODE? ? ? ? ? ? ? ? ? ? ? ? ? ? #

############################################################################

return loss, grads

pass

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
平臺(tái)聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡(jiǎn)書系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)服務(wù)。

推薦閱讀更多精彩內(nèi)容