十大經(jīng)典數(shù)據(jù)挖掘算法

算法是我的信仰..

因為它不像框架一樣,誰都做得了..

blog.jobbole.com/90316/?

1. C4.5算法

C4.5是一種決策樹算法,屬于監(jiān)督學(xué)習(xí)。先給一個樣本集,從而建立一棵決策樹,然后根據(jù)這個決策樹來對后續(xù)的數(shù)據(jù)做決策。

C4.5的缺點:

1. 算法低效,在構(gòu)造樹的過程中,需要對數(shù)據(jù)集進行多次的順序掃描和排序,因而導(dǎo)致算法的低效

2. 內(nèi)存受限,適合于能夠駐留于內(nèi)存的數(shù)據(jù)集,當(dāng)訓(xùn)練集大得無法在內(nèi)存容納時程序無法運行

一些專業(yè)的術(shù)語: 熵 / 信息增益 / 信息增益率

熵: 就是信息的不確定性,多樣性,包含的信息量的大小,需要用多少bit來傳遞這個信息。比如,拋一枚銀幣3次,得到的可能結(jié)果有8種,我們知道計算機要用3bit來傳遞,所以熵就是log2(8)=3。wiki上這樣解釋“你需要用 log2(n) 位來表示一個可以取n 個值的變量。

信息增益: 熵的減小量。決策樹的期望是盡快定位,也就是說我們希望數(shù)據(jù)集的多樣性越小越好,越小說明結(jié)果越穩(wěn)定,越能定位到準(zhǔn)確的結(jié)果。信息增益越大,則熵會變的越小,說明結(jié)果越好。信息增益的計算方式,是原數(shù)據(jù)集的熵,減去依照屬性劃分后,每個屬性值的概率* 對應(yīng)的子數(shù)據(jù)集的熵.

信息增益率: 對信息增益進行修正。信息增益會優(yōu)先選擇那些屬性值多的屬性,為了克服這種傾向,用一個屬性計算出的信息增益,除以該屬性本身的熵(SplitInfo),得到信息增益率。

2. K-Means算法

K-Means算法是一個聚類算法,把n個對象根據(jù)他們的屬性分為k個分割,k < n。它假設(shè)對象屬性來自于空間向量,并且目標(biāo)是使各個群組內(nèi)部的均 方誤差總和最小。它與處理混合正態(tài)分布的最大期望算法很相似,因為它們都試圖找到數(shù)據(jù)中自然聚類的中心。

算法的實現(xiàn)步驟

1. 從 n個數(shù)據(jù)對象任意選擇 k 個對象作為初始聚類中心;

2. 根據(jù)每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;并根據(jù)最小距離重新對相應(yīng)對象進行劃分;

3. 重新計算每個(有變化)聚類的均值(中心對象);

4. 計算標(biāo)準(zhǔn)測度函數(shù),當(dāng)滿足一定條件,如函數(shù)收斂時,則算法終止;如果條件不滿足則回到步驟2

3. SVM算法

SVM是一種監(jiān)督式學(xué)習(xí)算法,廣泛應(yīng)用于統(tǒng)計分類以及回歸分析中。SVM將向量映射到一個更高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數(shù)據(jù)的超平面的兩邊建有兩個互相平行的超平面,分隔超平面使兩個平行超平面的距離最大化。假定平行超平面間的距離或差距越大,分類器的總誤差越小。

svm的一般特征

1. SVM學(xué)習(xí)問題可以表示為凸優(yōu)化問題,因此可以利用已知的有效算法發(fā)現(xiàn)目標(biāo)函數(shù)的全局最小值。而其他分類方法(如基于規(guī)則的分類器和人工神經(jīng)網(wǎng)絡(luò))都采用一種基于貪心學(xué)習(xí)的策略來搜索假設(shè)空間,這種方法一般只能獲得局部最優(yōu)解。

2. SVM通過最大化決策邊界的邊緣來控制模型的能力。盡管如此,用戶必須提供其他參數(shù),如使用核函數(shù)類型和引入松弛變量等。

3. 通過對數(shù)據(jù)中每個分類屬性引入一個啞變量,SVM可以應(yīng)用于分類數(shù)據(jù)。

4. SVM一般只能用在二類問題,對于多類問題效果不好

4. Apriori算法

Apriori算法是一種最有影響的挖掘布爾關(guān)聯(lián)規(guī)則頻繁項集的算法。其核心是基于兩階段頻集思想的遞推算法。該關(guān)聯(lián)規(guī)則在分類上屬于單維、單層、布爾關(guān)聯(lián)規(guī)則。在這里,所有支持度大于最小支持度的項集稱為頻繁項集,簡稱頻集。

它的核心

其核心是基于兩階段頻集思想的遞推算法。該關(guān)聯(lián)規(guī)則在分類上屬于單維、單層、布爾關(guān)聯(lián)規(guī)則。在這里,所有支持度大于最小支持度的項集稱為頻繁項集,簡稱頻集

5. 最大期望算法

最大期望算法是一種迭代算法,在統(tǒng)計計算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中尋找參數(shù)最大似然估計的算法,其中概率模型依賴于無法觀測的隱藏變量(Latent Variabl)。最大期望經(jīng)常用在機器學(xué)習(xí)和計算機視覺的數(shù)據(jù)集聚(Data Clustering)領(lǐng)域。

算法的實現(xiàn)步驟

1. 計算期望(E),利用概率模型參數(shù)的現(xiàn)有估計值,計算隱藏變量的期望

2. 最大化(M),利用E 步上求得的隱藏變量的期望,對參數(shù)模型進行最大似然估計

6. PageRank算法

PageRank是對對網(wǎng)頁排名的算法,PageRank算法計算每一個網(wǎng)頁的PageRank值,然后根據(jù)這個值的大小對網(wǎng)頁的重要性進行排序。它的思想是模擬一個悠閑的上網(wǎng)者,上網(wǎng)者首先隨機選擇一個網(wǎng)頁打開,然后在這個網(wǎng)頁上呆了幾分鐘后,跳轉(zhuǎn)到該網(wǎng)頁所指向的鏈接,這樣無所事事、漫無目的地在網(wǎng)頁上跳來跳去,PageRank就是估計這個悠閑的上網(wǎng)者分布在各個網(wǎng)頁上的概率。

略...

7. AdaBoost算法

Adaboost算法是一種迭代算法,是十大算法中的第二個迭代算法,還有一個是前面的最大期望算法.其核心思想是針對同一個訓(xùn)練集訓(xùn)練不同的分類器(弱分類器),然后把這些弱分類器集合起來,構(gòu)成一個更強的最終分類器(強分類器)。

其算法本身是通過改變數(shù)據(jù)分布來實現(xiàn)的,它根據(jù)每次訓(xùn)練集之中每個樣本的分類是否正確,以及上次的總體分類的準(zhǔn)確率,來確定每個樣本的權(quán)值。將修改過權(quán)值的新數(shù)據(jù)集送給下層分類器進行訓(xùn)練,最后將每次訓(xùn)練得到的分類器最后融合起來,作為最后的決策分類器。使用adaboost分類器可以排除一些不必要的訓(xùn)練數(shù)據(jù)特征,并放在關(guān)鍵的訓(xùn)練數(shù)據(jù)上面。

算法的實現(xiàn)步驟:

1. 先通過對N個訓(xùn)練樣本的學(xué)習(xí)得到第一個弱分類器

2. 將分錯的樣本和其他的新數(shù)據(jù)一起構(gòu)成一個新的N個的訓(xùn)練樣本,通過對這個樣本的學(xué)習(xí)得到第二個弱分類器

3. 將1和2都分錯了的樣本加上其他的新樣本構(gòu)成另一個新的N個的訓(xùn)練樣本,通過對這個樣本的學(xué)習(xí)得到第三個弱分類器;

4. 最終經(jīng)過提升的強分類器。即某個數(shù)據(jù)被分為哪一類要由各分類器權(quán)值決定。

8. K近鄰算法

K近鄰算法是一種分類算法,是一個理論上比較成熟的方法,也是最簡單的機器學(xué)習(xí)算法之一。該方法的思路是:如果一個樣本在特征空間中的k個最相似(即特征空間中最鄰近)的樣本中的大多數(shù)屬于某一個類別,則該樣本也屬于這個類別。

算法的實現(xiàn)步驟

1. 計算已知類別的數(shù)據(jù)集(樣本集)中的點與當(dāng)前點之間的距離

2. 按照距離遞增排序

3. 選取與當(dāng)前點距離最小的K個點

4. 確定K個點所屬類別出現(xiàn)的概率

5.返回K個點中類別出現(xiàn)頻率最高的類別

9. 樸素貝葉斯算法

樸素貝葉斯法是基于貝葉斯定理與特征條件獨立假設(shè)的分類方法,是十大算法中的第二個分類算法,前一個是K近鄰算法.

樸素貝葉斯算法模型和決策樹算法模型相比,它有著堅實的數(shù)學(xué)基礎(chǔ),以及穩(wěn)定的分類效率。同時,NBC模型所需估計的參數(shù)很少,對缺失數(shù)據(jù)不太敏感,算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實際上并非總是如此,這是因為NBC模型假設(shè)屬性之間相互獨立,這個假設(shè)在實際應(yīng)用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。

算法的實現(xiàn)步驟

1. 準(zhǔn)備工作階段,這個階段的任務(wù)是為樸素貝葉斯分類做必要的準(zhǔn)備,主要工作是根據(jù)具體情況確定特征屬性,并對每個特征屬性進行適當(dāng)劃分,然后由人工對一部分待分類項進行分類,形成訓(xùn)練樣本集合。這一階段的輸入是所有待分類數(shù)據(jù),輸出是特征屬性和訓(xùn)練樣本。這一階段是整個樸素貝葉斯分類中唯一需要人工完成的階段,其質(zhì)量對整個過程將有重要影響,分類器的質(zhì)量很大程度上由特征屬性、特征屬性劃分及訓(xùn)練樣本質(zhì)量決定。

2. 分類器訓(xùn)練階段,這個階段的任務(wù)就是生成分類器,主要工作是計算每個類別在訓(xùn)練樣本中的出現(xiàn)頻率及每個特征屬性劃分對每個類別的條件概率估計,并將結(jié)果記錄。其輸入是特征屬性和訓(xùn)練樣本,輸出是分類器。這一階段是機械性階段,根據(jù)前面討論的公式可以由程序自動計算完成。

3. 應(yīng)用階段。這個階段的任務(wù)是使用分類器對待分類項進行分類,其輸入是分類器和待分類項,輸出是待分類項與類別的映射關(guān)系。這一階段也是機械性階段,由程序完成。

10. CART算法

CART是一種決策樹算法,是十大算法中繼C4.5之后的有一種決策樹算法.它采用一種二分遞歸分割的技術(shù),將當(dāng)前的樣本集分為兩個子樣本集,使得生成的的每個非葉子節(jié)點都有兩個分支。因此,CART算法生成的決策樹是結(jié)構(gòu)簡潔的二叉樹。

且行且珍惜..

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,963評論 6 542
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 99,348評論 3 429
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 178,083評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,706評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點故事閱讀 72,442評論 6 412
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,802評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,795評論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,983評論 0 290
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,542評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 41,287評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,486評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 39,030評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 44,710評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,116評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,412評論 1 294
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,224評論 3 398
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 48,462評論 2 378

推薦閱讀更多精彩內(nèi)容