yolo數據集制作

1:環境及其工具

labelimg,python=3.6,創建虛擬環境,不易污染其他環境
新的環境下,在View視圖目錄下,選中auto-save-model,Advanced Model。導入路徑,選中YOLO格式,如果是重復使用的環境,在新的文件夾創建新的標注,則需重新初始化labelimg,它在以上參數設置下會默認保存路徑為上次所用。標注信息為txt保存格式,每一行記錄一個標注對象,并由5個元素構成(object class{從0開始遞增},x_center/image width,y_center/image_height,width/image_width,height/image_height)歸一化(normalized:0-1)


normalize.png

這里標注的文件夾有兩個,如下,目標生成images和labels


前面兩個文件夾為標注的文件夾.png

標注的文件夾.png

txt內容.png
images/train.png

labels/train.png

拆分代碼如下:

# -*- coding: utf-8 -*-
import os, random, shutil
import numpy as np
import json
import shutil

def find_dir_path(path, keyword_name, dir_list):
    files = os.listdir(path)
    for file_name in files:
        file_path = os.path.join(path, file_name)
        if os.path.isdir(file_path) and keyword_name not in file_path:
            find_dir_path(file_path, keyword_name, dir_list)
        elif os.path.isdir(file_path) and keyword_name in file_path:
            dir_list.append(file_path)
            
all_result_path = []
src_path ='C:/Users/eadhaw/Desktop/0125/'
label_save_path = 'C:/Users/eadhaw/Desktop/0125/labels/val/'
image_save_path = 'C:/Users/eadhaw/Desktop/0125/images/val/'
label_save_path_after = 'C:/Users/eadhaw/Desktop/0125/labels/train/'
image_save_path_after = 'C:/Users/eadhaw/Desktop/0125/images/train/'
find_dir_path(src_path, 'bird', all_result_path)              # 找出所有帶著關鍵詞(_json)的所有目標文件夾
print(all_result_path)   

img_list = []
temp = []
for dir_path in all_result_path:
    FileNameList = os.listdir(dir_path)
    print(dir_path)
#     print(FileNameList)
    for i in range(len(FileNameList)):
        if(os.path.splitext(FileNameList[i])[1] == ".jpg"):
            temp = FileNameList[i][:-4]
            img_list.append(temp)
#             print(img_list)
            filenumber=len(img_list)
#     print(filenumber)
#     print(img_list)

### 該部分為拆分val后剩下的,復制到新的文件,不能和拆分val的一起運行

    for res in img_list:
        res_jpg = res + ".jpg"
        res_txt = res + ".txt"
        shutil.copy(dir_path + "/" + res_jpg, image_save_path_after + res_jpg)
        shutil.copy(dir_path + "/" + res_txt, label_save_path_after + res_txt)
        
### 該部分為拆分數據集得到val

    rate=0.2    #rate=想取圖片數量/文件夾下面所有圖片數量
    picknumber=int(filenumber*rate) #想取圖片數量(整數)
    sample = random.sample(img_list, picknumber)  #在圖片名list中隨機選取   
    print (sample)
    for name in sample:
        jpg_name = name + ".jpg"
        txt_name = name + ".txt"
        print(jpg_name)
        print(txt_name)
        shutil.move(dir_path + "/" + jpg_name, image_save_path + jpg_name)
        shutil.move(dir_path + "/" + txt_name, label_save_path + txt_name)

    img_list = []                    # 一個文件夾讀完,重新初始化,該步為兩部分都需的

最終的文件夾構成可仿照官方的樣例


最終文件夾構成官方樣例.png
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容