對于MQ消費(fèi)使用redis緩沖限流處理

一、好言

事實(shí)是這樣,假如你不懂我,那錯的永遠(yuǎn)是我,不必驚訝,連解釋都是多余。

二、背景

由于消費(fèi)MQ,會存在有就消費(fèi),可能會有并發(fā)的存在,在后臺引起的問題,所以需要多MQ的消費(fèi)做處理 ,然后我們將MQ消息消費(fèi)后,丟進(jìn)redsi,然后從開啟線程,從redis中取數(shù)據(jù)進(jìn)行消費(fèi),下面給出的是set和隊(duì)列的兩種方式。

三、內(nèi)容

3.1 SET的處理方式
 @PostConstruct
public void dealTask() throws Exception {
        ScheduledExecutorService es = Executors.newScheduledThreadPool(100);
        es.scheduleAtFixedRate(new Runnable() {
            @Override
            public void run() {
                logger.info("================");
                Long flag = stringRedisTemplate.opsForValue().increment(RedisConstant.TASK_SWITCH_POWER,1);
                if(flag == 1 ){//這個標(biāo)識用來控制集群,每次只有等于1的進(jìn)入,取完數(shù)據(jù)或者沒有數(shù)據(jù)都需要將該
值重新置為0
                    ZSetOperations<String, VO> zSetOperations = objectredisTemplate.opsForZSet();
                    Long count = zSetOperations.size(RedisConstant.NAME_TASK_KEY);
                    if(count > 0){
                        Set<VO> zsetRangeData = zSetOperations.range(RedisConstant.NAME_TASK_KEY,0L, 
count - 1);
                        zSetOperations.remove(RedisConstant.NAME_TASK_KEY, 
zsetRangeData.toArray());
                        stringRedisTemplate.opsForValue().set(RedisConstant.TASK_SWITCH_POWER, "0");
                        Iterator iterable = zsetRangeData.iterator();
                        while (iterable.hasNext()){
                            try {
                               //TODO處理業(yè)務(wù)
                            }catch (Exception e){
                                //出異常在把該信息添加進(jìn)去set
                                zSetOperations.add(RedisConstant.NAME_TASK_KEY, 
ZSetUtil.converToSet(vo));
                            }
                        }
                    }else{
                        stringRedisTemplate.opsForValue().set(RedisConstant.TASK_SWITCH_POWER, "0");
                    }
                }
            }
        },0,1, TimeUnit.SECONDS);
    }

接收端接收消息然后丟入redis,當(dāng)然你可以是指redis大小數(shù)量,超過上限則可以直接丟棄

               ZSetOperations<String, VO> zSet = redisTemplate.opsForZSet();
                if(zSet.size(RedisConstant.NAME_TASK_KEY) + 1  >= 
MAX_CHANNEL_MQ_TASK_SIZE){
                    logger.info("到達(dá)上限,丟棄消息 = "+messgage);
                    return;
                }
                zSet.add(RedisConstant.NAME_TASK_KEY, ZSetUtil.converToSet(messgage));

ZSetUtil.java

   public static Set<ZSetOperations.TypedTuple<VO>> converToSet(VO data){
        Set<ZSetOperations.TypedTuple<VO>> set = new HashSet<>(1);
        ZSetOperations.TypedTuple typedTuple;
        Long score = System.currentTimeMillis();
        typedTuple = new DefaultTypedTuple(data, score.doubleValue());
        set.add(typedTuple);
        return set;
    }
3.2、隊(duì)列方式

隊(duì)列方式先push然后pop出來,每次處理一條數(shù)據(jù)。


消息接收端

 ListOperations listOperations = redisTemplate.opsForList();
 redisTemplate.opsForList().leftPush(RedisConstant.NAME_TASK_KEY,msg);

開啟定時任務(wù)從redis中取數(shù)據(jù)

    @PostConstruct
    public void dealNameTask(){
     ScheduledExecutorService es = Executors.newScheduledThreadPool(10);
        es.scheduleAtFixedRate(new Runnable() {
            @Override
            public void run() {
                ListOperations listOperations = objectredisTemplate.opsForList();
                VO vo = (VO)listOperations.rightPop(RedisConstant.NAME_TASK_KEY);
                try {
                    if(null != vo){
                        //Todo處理業(yè)務(wù)
                    }else{
                        Thread.sleep(1000);
                    }
                }catch (Exception e){
                    //出現(xiàn)異常在push進(jìn)redis
                    listOperations.leftPush(RedisConstant.NAME_TASK_ZSET_KEY,vo);
                }
            }
        },0,1, TimeUnit.SECONDS);
    }

相對來說,push會簡單多了,只是set可以排序,并且也可以按照順序來取。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點(diǎn),簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,412評論 6 532
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,514評論 3 416
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,373評論 0 374
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 62,975評論 1 312
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 71,743評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,199評論 1 324
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,262評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,414評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,951評論 1 336
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 40,780評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 42,983評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,527評論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 44,218評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,649評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,889評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,673評論 3 391
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 47,967評論 2 374

推薦閱讀更多精彩內(nèi)容

  • Spring Cloud為開發(fā)人員提供了快速構(gòu)建分布式系統(tǒng)中一些常見模式的工具(例如配置管理,服務(wù)發(fā)現(xiàn),斷路器,智...
    卡卡羅2017閱讀 134,782評論 18 139
  • 1.1 資料 ,最好的入門小冊子,可以先于一切文檔之前看,免費(fèi)。 作者Antirez的博客,Antirez維護(hù)的R...
    JefferyLcm閱讀 17,087評論 1 51
  • 本文轉(zhuǎn)載自http://dataunion.org/?p=9307 背景介紹Kafka簡介Kafka是一種分布式的...
    Bottle丶Fish閱讀 5,489評論 0 34
  • 背景介紹 Kafka簡介 Kafka是一種分布式的,基于發(fā)布/訂閱的消息系統(tǒng)。主要設(shè)計(jì)目標(biāo)如下: 以時間復(fù)雜度為O...
    高廣超閱讀 12,861評論 8 167
  • 今天的表現(xiàn)有點(diǎn)傻逼了。 1.發(fā)車不及時,沒有按照一輛接一輛發(fā)車出去,導(dǎo)致有客滯留 2.算都算錯,被人取笑,沒有加上...
    一個人的獨(dú)行閱讀 160評論 0 0