10X單細胞(10X空間轉錄組)空間相關性分析和cellphoneDB與NicheNet聯合進行細胞通訊分析

hello,大家好,隨著10X單細胞、10X空間轉錄組如火如荼的進行中,我們的分析內容和手段也要進入深水區了,很多深入和細節的分析需要我們格外注意了,今天我們來分享兩個非常好的點,希望大家能夠深入分析自己的數據,發大文章。

首先第一點,Spatial Correlation Analysis,其實這個談過好幾次了,文章在10X空間轉錄組之共定位分析(細胞類型和配受體基因)10X空間轉錄組之基因的空間表達模式10X空間轉錄組(10X單細胞)之論細胞通訊空間分布的重要性等。這一次我們在文章Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma分享一些很經典和值得注意的方法,大家一定要重點關注。

We reasoned that genes expressed in adjacent spots in ST were potentially meaningful and that a simple correlation of genes across spots could overlook this adjacency structure within the data(在ST的相鄰斑點中表達的基因具有潛在的意義,并且各個斑點之間的基因簡單相關可能會忽略數據中的這種鄰接結構,這個地方已經多次強調過,希望引起大家的重視 ). Thus, we calculated average normalized gene expression(均一化的數據) across a ‘‘sliding window’’ of spot groups consisting of a central spot surrounding by its N nearest neighbors(臨近spot), where N = 4 in the original ST data and N = 6 in Visium samples for each spot in the tissue, generating a matrix of genes by average spot group expression across all spots(重點關注,臨近spot平均之后產生新的矩陣). This matrix can be correlated with any ‘‘anchoring’’ gene of interest (FOXP3 in our case) by calculating pairwise Pearson correlations of the FOXP3 expression vector across all spots and the gene average group expression vectors across spots(這個地方體現其準備的價值). These values reflect if the expression of a gene in the area surrounding the anchoring gene is correlated with the expression of the anchoring gene and termed ‘‘spatial gene correlation’’ with FOXP3 .(空間基因的相關性)。

關于空間基因的相關性分析,多次的強調過,因為組織有一個有序的“實體”,組織上的細胞類型,基因表達的分布都有其深刻的生物學意義,一定要重點關注。

第二個分析點,cellphoneDB與NicheNet聯合進行細胞通訊分析,這個方法相當經典

Ligand-receptor interactions were inferred using a similar approach as previously described (Vento-Tormo et al., 2018)(這個地方就是cellphoneDB的分析結果). We first calculated average expression of ligand and receptor pairs across cell type pairs in normalized scRNA-seq data from an aggregate of the seven patient tumor samples containing TSK cells(老套路). We only considered genes with more than 10% of cells demonstrating expression within each cell type considered. We calculated a null distribution for average ligand-receptor by shuffling cell identities in the aggregated data and re-calculating ligand-receptor average pair expression across 1,000 permutations of randomized cell identities. The P value was the number of randomized pairs exceeding the observed data. For bar plots shown in Figures 6B and 6C, in addition to including only ligand-receptor pairs with p < 0.001, we further thresholded individual ligand or receptor expression with a cutoff of average expression > 0.2 (in log space). The 0.2 cutoff was determined by calculating the average log gene expression distribution for all genes across each cell type, and genes expressed at or above this cutoff corresponded with the top 12% or higher of expressed genes for each cell type.(這個地方就是cellphoneDB的一般流程)。

For NicheNet analysis, we derived TME cell type signatures by taking the top 100 differentially expressed genes in cells isolated from tumors or normal skin, including B cells, endothelial cells, fibroblasts, Langerhans cells, plasmacytoid DCs, CD1C DCs, CLEC9A DCs, T cells, NK cells, macrophages, and MDSCs(熟悉這個軟件的同學應該不陌生,需要輸入靶基因列表,但是這個靶基因的選擇很有講究,不是簡單的cluster之間的差異。)。 We input these signatures into NicheNet to derive a union set of predicted ligands modulating tumor-specific TME cell type signatures(依據靶基因預測配體). For ligands predicting TSK modulation, we input the top 100 TSK-differentially expressed genes . The top 15% of predicted ligands (配體的挑選)by regulatory potential that also demonstrated significance in our scRNA-seq ligand-receptor interaction analysis .we used the FindAllMarkers function in Seurat to generate average logFC values per cell type compared to other cell types from the scRNAseq data.(千萬注意)。

For ligand-receptor spatial transcriptomic proximity analysis, the average value of all ligand-receptor pairs across the leading edge from the eight sections from patients 2, 4, and 10 were calculated first by averaging the ligand and receptor expression among each leading edge spot and its 4-6 nearest neighbors (depending on ST technology), and then taking the average values of all of these groups of five or seven spots across the leading edge. This calculation for each ligand-receptor pair was then performed on 1,000 randomized permutations of spot identities while preserving total number of spots per replicate section to generate a null distribution per patient. P value was calculated by number of randomized permutation calculations that exceeded the true average.(邊界分析)。

簡單總結一下,cellphoneDB分析配受體,依據感興趣的靶基因,通過NicheNet分析,挑選高活性的配體,然后再從cellphoneDB里面匹配顯著的配受體對,從而達到分析目的,說起來很簡單,但真正的操作,很需要智慧和能力。

生活很好,等你超越

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
禁止轉載,如需轉載請通過簡信或評論聯系作者。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,646評論 6 533
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,595評論 3 418
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,560評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,035評論 1 314
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,814評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,224評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,301評論 3 442
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,444評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 48,988評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,804評論 3 355
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,998評論 1 370
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,544評論 5 360
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,237評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,665評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,927評論 1 287
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,706評論 3 393
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 47,993評論 2 374

推薦閱讀更多精彩內容