最近在研究OCR識別相關(guān)的東西,最終目標(biāo)是能識別身份證上的所有中文漢字+數(shù)字,不過本文先設(shè)定一個小目標(biāo),先識別定長為18的身份證號,當(dāng)然本文的思路也是可以復(fù)用來識別定長的驗證碼識別的。
本文實(shí)現(xiàn)思路主要來源于Xlvector的博客,采用基于CNN實(shí)現(xiàn)端到端的OCR,下面引用博文介紹目前基于深度學(xué)習(xí)的兩種OCR識別方法:
- 把OCR的問題當(dāng)做一個多標(biāo)簽學(xué)習(xí)的問題。4個數(shù)字組成的驗證碼就相當(dāng)于有4個標(biāo)簽的圖片識別問題(這里的標(biāo)簽還是有序的),用CNN來解決。
- 把OCR的問題當(dāng)做一個語音識別的問題,語音識別是把連續(xù)的音頻轉(zhuǎn)化為文本,驗證碼識別就是把連續(xù)的圖片轉(zhuǎn)化為文本,用CNN+LSTM+CTC來解決。
這里方法1主要用來解決固定長度標(biāo)簽的圖片識別問題,而方法2主要用來解決不定長度標(biāo)簽的圖片識別問題,本文實(shí)現(xiàn)方法1識別固定18個數(shù)字字符的身份證號
環(huán)境依賴
- 本文基于tensorflow框架實(shí)現(xiàn),依賴于tensorflow環(huán)境,建議使用anaconda進(jìn)行python包管理及環(huán)境管理
- 本文使用freetype-py 進(jìn)行訓(xùn)練集圖片的實(shí)時生成,同時后續(xù)也可擴(kuò)展為能生成中文字符圖片的訓(xùn)練集,建議使用pip安裝
pip install freetype-py
- 同時本文還依賴于numpy和opencv等常用庫
pip install numpy cv2
知識準(zhǔn)備
- 本文不具體介紹CNN (卷積神經(jīng)網(wǎng)絡(luò))具體實(shí)現(xiàn)原理,不熟悉的建議參看集智博文卷積:如何成為一個很厲害的神經(jīng)網(wǎng)絡(luò),這篇文章寫得很??
- 本文實(shí)現(xiàn)思路很容易理解,就是把一個有序排列18個數(shù)字組成的圖片當(dāng)做一個多標(biāo)簽學(xué)習(xí)的問題,標(biāo)簽的長度可以任意改變,只要是固定長度的,這個訓(xùn)練方法都是適用的,當(dāng)然現(xiàn)實(shí)中很多情況是需要識別不定長度的標(biāo)簽的,這部分就需要使用方法2(CNN+lSTM+CTC)來解決了。
正文
訓(xùn)練數(shù)據(jù)集生成
首先先完成訓(xùn)練數(shù)據(jù)集圖片的生成,主要依賴于freetype-py庫生成數(shù)字/中文的圖片。其中要注意的一點(diǎn)是就是生成圖片的大小,本文經(jīng)過多次嘗試后,生成的圖片是32 x 256大小的,如果圖片太大,則可能導(dǎo)致訓(xùn)練不收斂
生成出來的示例圖片如下:
gen_image()方法返回
image_data:圖片像素數(shù)據(jù) (32,256)
label: 圖片標(biāo)簽 18位數(shù)字字符 477081933151463759
vec : 圖片標(biāo)簽轉(zhuǎn)成向量表示 (180,) 代表每個數(shù)字所處的列,總長度 18 * 10
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
身份證文字+數(shù)字生成類
@author: pengyuanjie
"""
import numpy as np
import freetype
import copy
import random
import cv2
class put_chinese_text(object):
def __init__(self, ttf):
self._face = freetype.Face(ttf)
def draw_text(self, image, pos, text, text_size, text_color):
'''
draw chinese(or not) text with ttf
:param image: image(numpy.ndarray) to draw text
:param pos: where to draw text
:param text: the context, for chinese should be unicode type
:param text_size: text size
:param text_color:text color
:return: image
'''
self._face.set_char_size(text_size * 64)
metrics = self._face.size
ascender = metrics.ascender/64.0
#descender = metrics.descender/64.0
#height = metrics.height/64.0
#linegap = height - ascender + descender
ypos = int(ascender)
if not isinstance(text, unicode):
text = text.decode('utf-8')
img = self.draw_string(image, pos[0], pos[1]+ypos, text, text_color)
return img
def draw_string(self, img, x_pos, y_pos, text, color):
'''
draw string
:param x_pos: text x-postion on img
:param y_pos: text y-postion on img
:param text: text (unicode)
:param color: text color
:return: image
'''
prev_char = 0
pen = freetype.Vector()
pen.x = x_pos << 6 # div 64
pen.y = y_pos << 6
hscale = 1.0
matrix = freetype.Matrix(int(hscale)*0x10000L, int(0.2*0x10000L),\
int(0.0*0x10000L), int(1.1*0x10000L))
cur_pen = freetype.Vector()
pen_translate = freetype.Vector()
image = copy.deepcopy(img)
for cur_char in text:
self._face.set_transform(matrix, pen_translate)
self._face.load_char(cur_char)
kerning = self._face.get_kerning(prev_char, cur_char)
pen.x += kerning.x
slot = self._face.glyph
bitmap = slot.bitmap
cur_pen.x = pen.x
cur_pen.y = pen.y - slot.bitmap_top * 64
self.draw_ft_bitmap(image, bitmap, cur_pen, color)
pen.x += slot.advance.x
prev_char = cur_char
return image
def draw_ft_bitmap(self, img, bitmap, pen, color):
'''
draw each char
:param bitmap: bitmap
:param pen: pen
:param color: pen color e.g.(0,0,255) - red
:return: image
'''
x_pos = pen.x >> 6
y_pos = pen.y >> 6
cols = bitmap.width
rows = bitmap.rows
glyph_pixels = bitmap.buffer
for row in range(rows):
for col in range(cols):
if glyph_pixels[row*cols + col] != 0:
img[y_pos + row][x_pos + col][0] = color[0]
img[y_pos + row][x_pos + col][1] = color[1]
img[y_pos + row][x_pos + col][2] = color[2]
class gen_id_card(object):
def __init__(self):
#self.words = open('AllWords.txt', 'r').read().split(' ')
self.number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
self.char_set = self.number
#self.char_set = self.words + self.number
self.len = len(self.char_set)
self.max_size = 18
self.ft = put_chinese_text('fonts/OCR-B.ttf')
#隨機(jī)生成字串,長度固定
#返回text,及對應(yīng)的向量
def random_text(self):
text = ''
vecs = np.zeros((self.max_size * self.len))
#size = random.randint(1, self.max_size)
size = self.max_size
for i in range(size):
c = random.choice(self.char_set)
vec = self.char2vec(c)
text = text + c
vecs[i*self.len:(i+1)*self.len] = np.copy(vec)
return text,vecs
#根據(jù)生成的text,生成image,返回標(biāo)簽和圖片元素數(shù)據(jù)
def gen_image(self):
text,vec = self.random_text()
img = np.zeros([32,256,3])
color_ = (255,255,255) # Write
pos = (0, 0)
text_size = 21
image = self.ft.draw_text(img, pos, text, text_size, color_)
#僅返回單通道值,顏色對于漢字識別沒有什么意義
return image[:,:,2],text,vec
#單字轉(zhuǎn)向量
def char2vec(self, c):
vec = np.zeros((self.len))
for j in range(self.len):
if self.char_set[j] == c:
vec[j] = 1
return vec
#向量轉(zhuǎn)文本
def vec2text(self, vecs):
text = ''
v_len = len(vecs)
for i in range(v_len):
if(vecs[i] == 1):
text = text + self.char_set[i % self.len]
return text
if __name__ == '__main__':
genObj = gen_id_card()
image_data,label,vec = genObj.gen_image()
cv2.imshow('image', image_data)
cv2.waitKey(0)
構(gòu)建網(wǎng)絡(luò),開始訓(xùn)練
首先定義生成一個batch的方法:
# 生成一個訓(xùn)練batch
def get_next_batch(batch_size=128):
obj = gen_id_card()
batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WIDTH])
batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN])
for i in range(batch_size):
image, text, vec = obj.gen_image()
batch_x[i,:] = image.reshape((IMAGE_HEIGHT*IMAGE_WIDTH))
batch_y[i,:] = vec
return batch_x, batch_y
用了Batch Normalization,個人還不是很理解,讀者可自行百度,代碼來源于參考博文
#Batch Normalization? 有空再理解,tflearn or slim都有封裝
## http://stackoverflow.com/a/34634291/2267819
def batch_norm(x, beta, gamma, phase_train, scope='bn', decay=0.9, eps=1e-5):
with tf.variable_scope(scope):
#beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0), trainable=True)
#gamma = tf.get_variable(name='gamma', shape=[n_out], initializer=tf.random_normal_initializer(1.0, stddev), trainable=True)
batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2], name='moments')
ema = tf.train.ExponentialMovingAverage(decay=decay)
def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean, batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean), tf.identity(batch_var)
mean, var = tf.cond(phase_train, mean_var_with_update, lambda: (ema.average(batch_mean), ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps)
return normed
定義4層CNN和一層全連接層,卷積核分別是2層5x5、2層3x3,每層均使用tf.nn.relu非線性化,并使用max_pool,網(wǎng)絡(luò)結(jié)構(gòu)讀者可自行調(diào)參優(yōu)化
# 定義CNN
def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1])
# 4 conv layer
w_c1 = tf.Variable(w_alpha*tf.random_normal([5, 5, 1, 32]))
b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))
conv1 = tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1)
conv1 = batch_norm(conv1, tf.constant(0.0, shape=[32]), tf.random_normal(shape=[32], mean=1.0, stddev=0.02), train_phase, scope='bn_1')
conv1 = tf.nn.relu(conv1)
conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv1 = tf.nn.dropout(conv1, keep_prob)
w_c2 = tf.Variable(w_alpha*tf.random_normal([5, 5, 32, 64]))
b_c2 = tf.Variable(b_alpha*tf.random_normal([64]))
conv2 = tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2)
conv2 = batch_norm(conv2, tf.constant(0.0, shape=[64]), tf.random_normal(shape=[64], mean=1.0, stddev=0.02), train_phase, scope='bn_2')
conv2 = tf.nn.relu(conv2)
conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv2 = tf.nn.dropout(conv2, keep_prob)
w_c3 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))
b_c3 = tf.Variable(b_alpha*tf.random_normal([64]))
conv3 = tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3)
conv3 = batch_norm(conv3, tf.constant(0.0, shape=[64]), tf.random_normal(shape=[64], mean=1.0, stddev=0.02), train_phase, scope='bn_3')
conv3 = tf.nn.relu(conv3)
conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv3 = tf.nn.dropout(conv3, keep_prob)
w_c4 = tf.Variable(w_alpha*tf.random_normal([3, 3, 64, 64]))
b_c4 = tf.Variable(b_alpha*tf.random_normal([64]))
conv4 = tf.nn.bias_add(tf.nn.conv2d(conv3, w_c4, strides=[1, 1, 1, 1], padding='SAME'), b_c4)
conv4 = batch_norm(conv4, tf.constant(0.0, shape=[64]), tf.random_normal(shape=[64], mean=1.0, stddev=0.02), train_phase, scope='bn_4')
conv4 = tf.nn.relu(conv4)
conv4 = tf.nn.max_pool(conv4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
conv4 = tf.nn.dropout(conv4, keep_prob)
# Fully connected layer
w_d = tf.Variable(w_alpha*tf.random_normal([2*16*64, 1024]))
b_d = tf.Variable(b_alpha*tf.random_normal([1024]))
dense = tf.reshape(conv4, [-1, w_d.get_shape().as_list()[0]])
dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
dense = tf.nn.dropout(dense, keep_prob)
w_out = tf.Variable(w_alpha*tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN]))
b_out = tf.Variable(b_alpha*tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN]))
out = tf.add(tf.matmul(dense, w_out), b_out)
return out
最后執(zhí)行訓(xùn)練,使用sigmoid分類,每100次計算一次準(zhǔn)確率,如果準(zhǔn)確率超過80%,則保存模型并結(jié)束訓(xùn)練
# 訓(xùn)練
def train_crack_captcha_cnn():
output = crack_captcha_cnn()
# loss
#loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=output, labels=Y))
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
# 最后一層用來分類的softmax和sigmoid有什么不同?
# optimizer 為了加快訓(xùn)練 learning_rate應(yīng)該開始大,然后慢慢衰
optimizer = tf.train.AdamOptimizer(learning_rate=0.002).minimize(loss)
predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
max_idx_p = tf.argmax(predict, 2)
max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
correct_pred = tf.equal(max_idx_p, max_idx_l)
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 0
while True:
batch_x, batch_y = get_next_batch(64)
_, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75, train_phase:True})
print(step, loss_)
# 每100 step計算一次準(zhǔn)確率
if step % 100 == 0 and step != 0:
batch_x_test, batch_y_test = get_next_batch(100)
acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1., train_phase:False})
print "第%s步,訓(xùn)練準(zhǔn)確率為:%s" % (step, acc)
# 如果準(zhǔn)確率大80%,保存模型,完成訓(xùn)練
if acc > 0.8:
saver.save(sess, "crack_capcha.model", global_step=step)
break
step += 1
執(zhí)行結(jié)果,筆者在大概500次訓(xùn)練后,得到準(zhǔn)確率84.3%的結(jié)果
大概訓(xùn)練1500~2200次左右,準(zhǔn)確率就能達(dá)到98%,打印前5條測試樣本可以看出,輸出結(jié)果基本與label一致了
后記
最后所有代碼和字體資源文件托管在我的Github下
筆者在一開始訓(xùn)練的時候圖片大小是64 x 512的,訓(xùn)練的時候發(fā)現(xiàn)訓(xùn)練速度很慢,而且訓(xùn)練的loss不收斂一直保持在0.33左右,縮小圖片為32 x 256后解決,不知道為啥,猜測要么是網(wǎng)絡(luò)層級不夠,或者特征層數(shù)不夠吧。
小目標(biāo)完成后,為了最終目標(biāo)的完成,后續(xù)可能嘗試方法2,去識別不定長的中文字符圖片,不過要先去理解LSTM網(wǎng)絡(luò)和 CTC模型了。
參考鏈接
TensorFlow練習(xí)20: 使用深度學(xué)習(xí)破解字符驗證碼
Python2.x上使用freetype實(shí)現(xiàn)OpenCV2.x的中文輸出
端到端的OCR:基于CNN的實(shí)現(xiàn)