okhttp緩存大致內容(3.12)

在最近的工作中接觸到了okhttp的緩存,借此機會記錄下。網上已經有很多相關文章了,比如參考文章一還包括了http頭緩存的相關介紹;但是一來自己跟代碼記得比較牢,二來我比較關心緩存中lastModified和etag的設置所以需要挑重點,所以還是自己下手了。
本文基于okhttp 3.12版本

開啟緩存

okhttp開啟緩存非常方便,只需要設置cache參數即可

//3mb緩存
final int cacheSize = 1024 * 1024 * 3;
defaultBuilder = new OkHttpClient.Builder()
.cache(new Cache(CmGameSdkConstant.getAppContext().getCacheDir(), cacheSize))
.connectTimeout(DEFAULT_CONNECT_TIME_SEC, TimeUnit.SECONDS);

這樣設置之后,okhttp就開啟了緩存,包括本地緩存以及瀏覽器相關緩存(etag、last-modify),這一點我一開始是不信的(原先沒有關注這方面),看完之后就。。。真香

緩存類Cache內部設置

在第一步中我們開啟了緩存,也就是開啟了cache選項,其中傳入了Cache對象。我們看看這個對象做了些什么,首先就是get,這里根據請求拿到緩存對應的回復,這里是使用LruCache做本地緩存的。

@Nullable Response get(Request request) {
    String key = key(request.url());
    DiskLruCache.Snapshot snapshot;
    Entry entry;
    try {
      snapshot = cache.get(key);
      if (snapshot == null) {
        return null;
      }
    } catch (IOException e) {
      // Give up because the cache cannot be read.
      return null;
    }

    try {
      entry = new Entry(snapshot.getSource(ENTRY_METADATA));
    } catch (IOException e) {
      Util.closeQuietly(snapshot);
      return null;
    }

    Response response = entry.response(snapshot);

    if (!entry.matches(request, response)) {
      Util.closeQuietly(response.body());
      return null;
    }

    return response;
  }

  // 這里是將請求映射為url,使用md5計算
  public static String key(HttpUrl url) {
    return ByteString.encodeUtf8(url.toString()).md5().hex();
  }

緩存任務攔截器 CacheInterceptor

在請求流程中,是用鏈式分發的形式走的,大概如下:

Response getResponseWithInterceptorChain() throws IOException {
    // Build a full stack of interceptors.
    List<Interceptor> interceptors = new ArrayList<>();
    interceptors.addAll(client.interceptors());
    interceptors.add(retryAndFollowUpInterceptor);
    interceptors.add(new BridgeInterceptor(client.cookieJar()));
    interceptors.add(new CacheInterceptor(client.internalCache()));
    interceptors.add(new ConnectInterceptor(client));
    if (!forWebSocket) {
      interceptors.addAll(client.networkInterceptors());
    }
    interceptors.add(new CallServerInterceptor(forWebSocket));

    Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
        originalRequest, this, eventListener, client.connectTimeoutMillis(),
        client.readTimeoutMillis(), client.writeTimeoutMillis());

    return chain.proceed(originalRequest);
  }

其中緩存的關鍵類就是CacheInterceptor
我們來看看他的攔截關鍵方法

@Override public Response intercept(Chain chain) throws IOException {
    Response cacheCandidate = cache != null
        ? cache.get(chain.request())
        : null;

一開始根據請求去獲取緩存的回復

拿到歷史緩存后,加上當前時間構建Request以及Response對象

long now = System.currentTimeMillis();

CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
Request networkRequest = strategy.networkRequest;
Response cacheResponse = strategy.cacheResponse;

這個緩存策略CacheStrategy很重要,基本上后面的匹配都與他有關。這里根據請求和緩存回復構建,后面關于http的匹配都是在里面。

在構造方法里,我們看到他將解決請求時間、etag以及lastModify等信息都保存下來了,為之后的緩存氫氣做準備

CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();

//看下Factory的構造方法
 public Factory(long nowMillis, Request request, Response cacheResponse) {
      this.nowMillis = nowMillis;
      this.request = request;
      this.cacheResponse = cacheResponse;

      if (cacheResponse != null) {
        this.sentRequestMillis = cacheResponse.sentRequestAtMillis();
        this.receivedResponseMillis = cacheResponse.receivedResponseAtMillis();
        Headers headers = cacheResponse.headers();
        for (int i = 0, size = headers.size(); i < size; i++) {
          String fieldName = headers.name(i);
          String value = headers.value(i);
          //這里用來保存服務器時間,為之后的緩存過期做準備
          if ("Date".equalsIgnoreCase(fieldName)) {
            servedDate = HttpDate.parse(value);
            servedDateString = value;
          } else if ("Expires".equalsIgnoreCase(fieldName)) {
            expires = HttpDate.parse(value);
          } else if ("Last-Modified".equalsIgnoreCase(fieldName)) {
            lastModified = HttpDate.parse(value);
            lastModifiedString = value;
          } else if ("ETag".equalsIgnoreCase(fieldName)) {
            etag = value;
          //表示收到的時間,同樣是為了后面過期做準備
          } else if ("Age".equalsIgnoreCase(fieldName)) {
            ageSeconds = HttpHeaders.parseSeconds(value, -1);
          }
        }
      }
    }

隨后我們會開始構建CacheStrategy,也就是緩存策略,緩存會最終體現在CacheStrategy的networkRequest和cacheResponse中,也就是他的構造函數。最終實現方法在getCandidate()中:

 private CacheStrategy getCandidate() {
      // No cached response.
      // 沒有緩存,那直接返回
      if (cacheResponse == null) {
        return new CacheStrategy(request, null);
      }

      // Drop the cached response if it's missing a required handshake.
      // handshake是握手的意思,如果請求為https而且沒有經過握手,那也不緩存
      if (request.isHttps() && cacheResponse.handshake() == null) {
        return new CacheStrategy(request, null);
      }

      // If this response shouldn't have been stored, it should never be used
      // as a response source. This check should be redundant as long as the
      // persistence store is well-behaved and the rules are constant.
      // 這里是判斷是否不允許緩存,比如返回頭中的no-store,注意這里同步比較了請求和返回的cache策略
      if (!isCacheable(cacheResponse, request)) {
        return new CacheStrategy(request, null);
      }
      
      // 第一個判斷是請求是否允許緩存,第二個是請求中如果已經帶了If-Modified-Since或者If-None-Match,說明上層自己做了緩存
      CacheControl requestCaching = request.cacheControl();
      if (requestCaching.noCache() || hasConditions(request)) {
        return new CacheStrategy(request, null);
      }

      CacheControl responseCaching = cacheResponse.cacheControl();
      
      //cacheResponseAge 緩存時間的計算大概如下
      //return receivedAge + responseDuration + residentDuration;
      //也就是請求到收到時間+現在使用時間
      long ageMillis = cacheResponseAge();
      //通過之前緩存的expires、last-modify等計算緩存有效期
      long freshMillis = computeFreshnessLifetime();
      
      // 如果請求中已經包含了max-age,那么我們取相對最小值
      if (requestCaching.maxAgeSeconds() != -1) {
        freshMillis = Math.min(freshMillis, SECONDS.toMillis(requestCaching.maxAgeSeconds()));
      }
      // Cache-Control相關    
      // min-fresh是指在期望的時間內響應有效
      long minFreshMillis = 0;
      if (requestCaching.minFreshSeconds() != -1) {
        minFreshMillis = SECONDS.toMillis(requestCaching.minFreshSeconds());
      }

      // 這個同上,mustRevalidate是指在本地副本未過期前可以使用,否則必須刷新
      long maxStaleMillis = 0;
      if (!responseCaching.mustRevalidate() && requestCaching.maxStaleSeconds() != -1) {
        maxStaleMillis = SECONDS.toMillis(requestCaching.maxStaleSeconds());
      }

      // 還沒過期,加個warning信息返回上層,隨即復用緩存
      if (!responseCaching.noCache() && ageMillis + minFreshMillis < freshMillis + maxStaleMillis) {
        Response.Builder builder = cacheResponse.newBuilder();
        if (ageMillis + minFreshMillis >= freshMillis) {
          builder.addHeader("Warning", "110 HttpURLConnection \"Response is stale\"");
        }
        long oneDayMillis = 24 * 60 * 60 * 1000L;
        if (ageMillis > oneDayMillis && isFreshnessLifetimeHeuristic()) {
          builder.addHeader("Warning", "113 HttpURLConnection \"Heuristic expiration\"");
        }
        return new CacheStrategy(null, builder.build());
      }

      // Find a condition to add to the request. If the condition is satisfied, the response body
      // will not be transmitted.
      // 這里也有點意思,etag優先,然后是If-Modified-Since,然后是服務器時間,進行拼接,向服務器請求
      String conditionName;
      String conditionValue;
      if (etag != null) {
        conditionName = "If-None-Match";
        conditionValue = etag;
      } else if (lastModified != null) {
        conditionName = "If-Modified-Since";
        conditionValue = lastModifiedString;
      } else if (servedDate != null) {
        conditionName = "If-Modified-Since";
        conditionValue = servedDateString;
      } else {
        // 如果這些都沒有了,那只能走普通的網絡請求了
        return new CacheStrategy(request, null); // No condition! Make a regular request.
      }
        
      // 最后就是我們的集大成者了,header內部是用鍵值對維護的
      // 我們重新修改后,生成“附帶屬性”的conditionalRequest
      Headers.Builder conditionalRequestHeaders = request.headers().newBuilder();
      Internal.instance.addLenient(conditionalRequestHeaders, conditionName, conditionValue);
    
      Request conditionalRequest = request.newBuilder()
          .headers(conditionalRequestHeaders.build())
          .build();
      return new CacheStrategy(conditionalRequest, cacheResponse);
    }

上面是緩存的大頭,構建出了我們想要的內容,同時先過濾一次網絡請求,如果本地緩存可用則先用本地緩存,這個時候request是為空的。

下面我們回到攔截方法CacheInterceptor.intercept

// If we're forbidden from using the network and the cache is insufficient, fail
// 這里是禁止使用網絡的情況下緩存又無效,所以直接504錯誤
if (networkRequest == null && cacheResponse == null) {
      return new Response.Builder()
          .request(chain.request())
          .protocol(Protocol.HTTP_1_1)
          .code(504)
          .message("Unsatisfiable Request (only-if-cached)")
          .body(Util.EMPTY_RESPONSE)
          .sentRequestAtMillis(-1L)
          .receivedResponseAtMillis(System.currentTimeMillis())
          .build();
    }

    // If we don't need the network, we're done.
    // 如果緩存未過期同時又沒有網絡,直接返回緩存結果
    if (networkRequest == null) {
      return cacheResponse.newBuilder()
          .cacheResponse(stripBody(cacheResponse))
          .build();
    }
    
    // 走到這里說明能用的緩存都用了,還是需要走網絡的,交給鏈條的下一個
    Response networkResponse = null;
    try {
      networkResponse = chain.proceed(networkRequest);
    } finally {
      // If we're crashing on I/O or otherwise, don't leak the cache body.
      if (networkResponse == null && cacheCandidate != null) {
        closeQuietly(cacheCandidate.body());
      }
    }
    
    
    
     // If we have a cache response too, then we're doing a conditional get.
    if (cacheResponse != null) {
      if (networkResponse.code() == HTTP_NOT_MODIFIED) {
        // 如果是傳說中的304,那么緩存可用,我們主動構建一個回復
        Response response = cacheResponse.newBuilder()
            .headers(combine(cacheResponse.headers(), networkResponse.headers()))
            .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
            .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
            .cacheResponse(stripBody(cacheResponse))
            .networkResponse(stripBody(networkResponse))
            .build();
        networkResponse.body().close();

        // Update the cache after combining headers but before stripping the
        // Content-Encoding header (as performed by initContentStream()).
        cache.trackConditionalCacheHit();
        cache.update(cacheResponse, response);
        return response;
      } else {
        closeQuietly(cacheResponse.body());
      }
    }
    
    // 否則更新response信息
    Response response = networkResponse.newBuilder()
        .cacheResponse(stripBody(cacheResponse))
        .networkResponse(stripBody(networkResponse))
        .build();

    if (cache != null) {
      if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
        // Offer this request to the cache.
        CacheRequest cacheRequest = cache.put(response);
        return cacheWritingResponse(cacheRequest, response);
      }

      if (HttpMethod.invalidatesCache(networkRequest.method())) {
        try {
          cache.remove(networkRequest);
        } catch (IOException ignored) {
          // The cache cannot be written.
        }
      }
    }
    

參考文章

  1. http://www.lxweimin.com/p/00d281c226f6 okhttp緩存處理
  2. https://blog.csdn.net/aiynmimi/article/details/79807036 OkHttp3源碼分析之緩存Cache
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容