原英文文檔
encoding:utf-8
1.導入包
import numpy as np
2.顯示版本,打印配置信息
print(np.__version__)
print(np.show_config())
3.創建一個size為10值為0的vector
print(np.zeros(10))
4.獲取某個函數的幫助文檔
print(np.info(np.add))
5.創建一個值都為0的vector,第5個值為1
Z = np.zeros(10)
Z[4] = 1
print(Z)
6.創建一個值得范圍為10-49的向量
Z = np.arange(10,50)
print(Z)
7.翻轉一個vector
Z = np.arange(50)
print(Z[::-1])
8.創建一個3*3的矩陣,值的范圍從0-8
Z= np.arange(9).reshape((3,3))
print(Z)
9.找到非0數值的索引
nz = np.nonzero([1,2,0,0,4,0])
print(nz)
10.創建一個3*3的單位矩陣
Z = np.eye(3,3)
print(Z)
11.創建一個333的隨機數組
Z= np.random.random((10,10))
print(Z)
12.創建一個10*10的隨機數組,并找到最大最小值
Z = np.random.random((10,10))
Zmin,Zmax = Z.min(),Z.max()
print(Zmin,Zmax)
13.創建一個長度的30的隨機數據,并計算平均值
Z = np.random.random(30)
Zmean = Z.mean()
print(Zmean)
14.創建一個2維數組,border為1,里面為0
Z = np.ones((10,10))
Z[1:-1,1:-1] = 0
print(Z)
15.下面表達式的結果
print(0*np.nan)
print(np.nan == np.nan)
print(np.inf > np.nan)
print(np.nan - np.nan)
print(0.3 == 3*0.1)
16創建一個5*5的矩陣,1,2,3,4正好在對角線下面
Z = np.diag(1+np.arange(4),k=-1)
print(Z)
17.創建一個8*8的矩陣,棋盤形式填充
Z = np.zeros((8,8),dtype=int)
Z[1::2,::2] = 1
Z[::2,1::2] = 1
print(Z)
18.考慮一個(6,7,8)形狀數組,第100個元素的索引(x,y,z)是多少?
print(np.unravel_index(100,(6,7,8)))
19.用tile函數創建一個8*8的棋盤矩陣
Z = np.tile(np.array([[0,1],[1,0]]),(4,4))
print(Z)
20.歸一化一個5*5的隨機數組
Z = np.random.random((5,5))
Zmin,Zmax = Z.min(),Z.max()
Z = (Z - Zmin)/(Zmax - Zmin)
print(Z)
21.創建一個自定義的dtype,它將顏色描述為四個無符號字節(RGBA)
color = np.dtype([("r", np.ubyte, 1),
("g", np.ubyte, 1),
("b", np.ubyte, 1),
("a", np.ubyte, 1)])
print(color)
22.53矩陣乘以32矩陣
Z = np.dot(np.ones((5,3)),np.ones((3,2)))
print(Z)
23.給定一個1D陣列,3到8之間的元素置為相反數
Z = np.arange(11)
Z[(Z > 3) & (Z <8)] *= -1
print(Z)
24.下面腳本的輸出
print(sum(np.arange(5),-1))
print(np.sum(np.arange(5),-1))
25.以下表達式哪個是合法的?
Z = np.arange(10)
Z**Z
2 << Z >>2
Z <- Z
1j*Z
Z/1/1
Z<Z>Z
26.以下表達式的運行結果
np.array(0) // np.array(0)
np.array(0) // np.array(0.)
np.array(0) / np.array(0)
np.array(0) / np.array(0.)
27.數組的四舍五入
Z = np.random.uniform(-10,+10,10)
print (np.trunc(Z + np.copysign(0.5, Z)))
28.用5中不同的方法提取數組的整數部分
Z = np.random.uniform(0,10,10)
print(Z - Z%1)
print(np.floor(Z))
print(np.ceil(Z - 1))
print(Z.astype(np.int32))
print(np.trunc(Z))
29.創建一個5x5矩陣,行值范圍從0到4
Z = np.zeros((5,5))
Z += np.arange(5)
print(Z)
30.考慮一個生成函數,生成10個整數,并使用它生成一個數組
def generate():
for x in xrange(10):
yield x
Z = np.fromiter(generate(),dtype=float,count=-1)
print(Z)
31.創建一個大小為10的向量,值為0到1,不包含0和1
Z = np.linspace(0,1,12,endpoint=True)[1:-1]
print(Z)
32.創建一個隨機向量并排序
Z = np.random.random(10)
Z.sort()
print(Z)
33.如果比np.sum更快的求數組的和
Z = np.arange(10)
print(np.add.reduce(Z))
34.判斷兩個隨機數組是否相等
A = np.random.randint(0,2,5)
B = np.random.randint(0,2,5)
equal = np.allclose(A,B)
print(equal)
35.使數組只讀
Z = np.zeros(10)
Z.flags.writeable = False
Z[5] = 1
36.考慮一個代表笛卡爾坐標的隨機10x2矩陣,將其轉換為極坐標
Z = np.random.random((10,2))
X,Y = Z[:,0], Z[:,1]
R = np.sqrt(X**2+Y**2)
T = np.arctan2(Y,X)
print(R)
print(T)
37.創建大小為10的隨機向量,并將最大值替換為0
Z = np.random.random(10)
Z[Z.argmax()] = 0
print(Z)
38.創建一個結構化數組,使x,y的坐標覆蓋 [0,1]x[0,1]區域
Z = np.zeros((10,10), [('x',float),('y',float)])
Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,10),
np.linspace(0,1,10))
print(Z)
39.給定兩個數組X和Y構造Cauchy矩陣C (Cij = 1/(xi - yj))
X = np.arange(8)
Y = X + 0.5
C = 1.0 / np.subtract.outer(X,Y)
print(np.linalg.det(C))
40.打印每個numpy標量類型的最小和最大可表示值
for dtype in [np.int8, np.int32, np.int64]:
print(np.iinfo(dtype).min)
print(np.iinfo(dtype).max)
for dtype in [np.float32, np.float64]:
print(np.finfo(dtype).min)
print(np.finfo(dtype).max)
print(np.finfo(dtype).eps)
41.如何打印一個數組的所有元素
np.set_printoptions(threshold=np.nan)
Z = np.zeros((25,25))
print(Z)
42.找到和另一個數組最接近的值
Z = np.arange(100)
v = np.random.uniform(0,100)
index = (np.abs(Z-v)).argmin()
print(Z[index])
43.構建一個結構化數組,表示position(x,y)和color(r,g,b)
Z = np.zeros(10, [ ('position', [ ('x', float, 1),
('y', float, 1)]),
('color', [ ('r', float, 1),
('g', float, 1),
('b', float, 1)])])
print(Z)
44.構建一個(10,2)的隨機向量表示坐標,計算點與點之間的距離
Z = np.random.random((10,2))
X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1])
D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
print(D)
# Much faster with scipy
import scipy.spatial
Z = np.random.random((10,2))
D = scipy.spatial.distance.cdist(Z,Z)
print(D)
45.怎樣把一個整型數組轉換成浮點型
Z = np.arange(10, dtype=np.int32)
Z = Z.astype(np.float32, copy=False)
46.怎樣讀取一個文件
'''
File content:
-------------
1,2,3,4,5
6,,,7,8
,,9,10,11
-------------
'''
Z = np.genfromtxt("missing.dat", delimiter=",")
47.numpy數組的枚舉是什么?
Z = np.arange(9).reshape(3,3)
for index, value in np.ndenumerate(Z):
print(index, value)
for index in np.ndindex(Z.shape):
print(index)
print(index, Z[index])
48.生成一個通用的2D高斯分布數組
X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
D = np.sqrt(X*X+Y*Y)
sigma, mu = 1.0, 0.0
G = np.exp(-( (D-mu)**2 / ( 2.0 * sigma**2 ) ) )
print(G)
49.如何隨機p個元素放置在2D數組中?
n = 10
p = 3
Z = np.zeros((n,n))
np.put(Z, np.random.choice(range(n*n), p, replace=False),1)
print(Z)
50.減去矩陣每行的平均值
Z = np.random.rand(5,10)
Y = Z - Z.mean(axis=1,keepdims = True)
print(Z)
print(Y)
51.如何根據第n列排序數組
Z = np.random.randint(0,10,(3,3))
print(Z)
print(Z[Z[:,1].argsort()])
52.如何判斷給定的2D數組是否具有空列?
Z = np.random.randint(0,3,(3,10))
print((~Z.any(axis=0)).any())
53.從數組中的給定值中找到最近的值
Z = np.random.uniform(0,1,10)
z = 0.5
m = Z.flat[np.abs(Z - z).argmin()]
print(m)
54.創建一個具有name屬性的數組類
class NamedArray(np.ndarray):
def __new__(cls, array, name="no name"):
obj = np.asarray(array).view(cls)
obj.name = name
return obj
def __array_finalize__(self, obj):
if obj is None: return
self.info = getattr(obj, 'name', "no name")
Z = NamedArray(np.arange(10), "range_10")
print (Z.name)
55.考慮一個1-D向量,如何向由第二個向量索引的每個元素添加1(小心重復索引)
Z = np.ones(10)
I = np.random.randint(0,len(Z),20)
Z += np.bincount(I, minlength=len(Z))
print(Z)
56.如何基于索引列表(I)將向量(X)的元素累加到數組(F)
X = [1,2,3,4,5,6]
I = [1,3,9,3,4,1]
F = np.bincount(I,weights = X)
print(F)
57.考慮一個(w,h,3)的圖像,數據類型為unit8,計算色彩個數
w,h = 16,16
I = np.random.randint(0,2,(h,w,3)).astype(np.ubyte)
F = I[...,0]*256*256 + I[...,1]*256 +I[...,2]
n = len(np.unique(F))
print(n)
58.考慮一個四維數組,如何一次得到最后兩軸的和?
A = np.random.randint(0,10,(3,4,3,4))
sum = A.reshape(A.shape[:-2] + (-1,)).sum(axis=-1)
print(sum)
59.考慮一維向量D,如何使用描述子集索引的相同大小的向量S來計算D的子集的平均值?
D = np.random.uniform(0,1,100)
S = np.random.randint(0,10,100)
D_sums = np.bincount(S,weights=D)
D_counts = np.bincount(S)
D_means = D_sums / D_counts
print(D_means)
60.如何計算對角線元素點乘
A = np.random.randint(0,10,(3,3))
B = np.random.randint(0,10,(3,3))
# Slow version
print(np.diag(np.dot(A, B)))
# Fast version
print(np.sum(A * B.T, axis=1))
# Faster version
print(np.einsum("ij,ji->i", A, B))