基于tensorflow搭建一個簡單的CNN模型(code)


我們將要搭建一個簡單的卷積神經網絡結構去提高手寫數字的預測結果精度。

# Introductory CNN Model: MNIST Digits

# In this example, we will download the MNIST?handwritten

# digits and create a simple CNN network to predict the

# digit category (0-9)

主要分為以下幾個步驟:導入數據;創建模型的變量;搭建模型;采用批量化訓練網絡;可視化loss,accuracy等結果。


1.導入必要的庫和開始一個圖譜會話

import tensorflow as tf

import numpy as np

import matplotlib as plt

from tensorflow.contrib.learn.python.learn.datasets.mnist import read_data_sets

sess = tf.Session()

2.導入數據集和將圖片裝換為28 * 28大小的矩陣

data_dir = 'temp'?? #數據集存放的文件夾

mnist = read_data_sets(data_dir)????? #讀取數據集

#將訓練和測試數據集圖片歸一化為28*28大小

train_xdata = np.array([np.reshape(x, (28,28)) for x in mnist.train.images])

test_xdata = np.array([np.reshape(x, (28,28)) for x in mnist.test.images])

train_labels = mnist.train.labels??? #訓練數據集標簽

test_labels = mnist.test.labels?????? #測試數據集標簽

3.定義模型參數

batch_size = 100?????? #一個批量的圖片數量

learning_rate = 0.005?????????? #學習率

evaluation_size = 500????????? #模型驗證數據集一個批量的數量

image_width = train_xdata[0].shape[0]????? #圖片的長 28

image_height = train_xdata[0].shape[1]???? #圖片的寬 28

target_size = max(train_labels)+1??? #輸出類別的個數 10

num_channels = 1???????????????????????????? # 通道數為1

generations = 500????????????????????????????? #迭代代數

eval_every = 5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?#每次5個generation

conv1_features = 25????????????????????????? #卷積核的個數

conv2_features = 50????????????????????????? #卷積核的個數

max_pool_size1 = 2????????????????????????? #池化層窗口大小

max_pool_size2 = 2????????????????????????? #池化層窗口大小

fully_connected_size1 = 100??????????? #全連接層大小

4.定義數據集的占位符

#輸入數據的張量大小

x_input_shape = (batch_size, image_width, image_height, num_channels)

#創建輸入訓練數據的占位符

x_input = tf.placeholder(tf.float32, shape=x_input_shape)? ? ? ? ?

#創建一個批量訓練結果的占位符

y_target = tf.placeholder(tf.int32, shape=batch_size)? ? ? ? ?

#驗證圖片輸入張量

eval_input_shape = (evaluation_size, image_width, image_height,num_channels)

#創建輸入驗證數據的占位符

eval_input = tf.placeholder(tf.float32, shape=eval_input_shape)? ??

#創建一個批量驗證結果的占位符

eval_target = tf.placeholder(tf.int32, shape= evaluation_size )??

5.定義訓練權重和偏置的變量

#定義第一個卷積核的參數,其中用tf.truncated_normal生成正太分布的數據,#stddev(正態分布標準差)為0.1

conv1_weight = tf.Variable(tf.truncated_normal([4, 4, num_channels, conv1_features], stddev=0.1, dtype = tf.float32))

#定義第一個卷積核對應的偏置

conv1_bias = tf.Variable(tf.zeros([conv1_features], dtype=tf.float32))

#定義第二個卷積核的參數,其中用tf.truncated_normal生成正太分布的數據,#stddev(正態分布標準差)為0.1

conv2_weight = tf.Variable(tf.truncated_normal([4, 4, num_channels, conv2_features], stddev=0.1, dtype = tf.float32))

#定義第二個卷積核對應的偏置

conv2_bias = tf.Variable(tf.zeros([conv2_features], dtype=tf.float32))

6.定義全連接層的權重和偏置

#輸出卷積特征圖的大小

resulting_width = image_width // (max_pool_size1 * max_pool_size2)

resulting_height = image_height // (max_pool_size1 * max_pool_size2)

#將卷積層特征圖拉成一維向量

full1_input_size = resulting_width * resulting_height * conv2_features

#創建第一個全連接層權重和偏置

full1_weight =tf.Variable(tf.truncated_normal([full1_input_size,fully_connected_size1],

?????????????????????????????????????????????? stddev=0.1, dtype=tf.float32))

full1_bias = tf.Variable(tf.truncated_normal([fully_connected_size1], stddev=0.1,

?????????????????????????????????????????????? dtype=tf.float32))

#創建第二個全連接層權重和偏置

full2_weight = tf.Variable(tf.truncated_normal([fully_connected_size1,target_size],

?????????????????????????????????????????????? stddev=0.1, dtype=tf.float32))

full2_bias = tf.Variable(tf.truncated_normal([target_size], stddev=0.1,

?????????????????????????????????????????????? dtype=tf.float32))

7.定義網絡模型

def my_conv_net(input_data):

??? #First Conv-relu-maxpool layer

??? conv1 = tf.nn.conv2d(input_data, conv1_weight, strides=[1, 1, 1, 1], padding='SAME')

??? relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias))

??? max_pool1 = tf.nn.max_pool(relu1, ksize=[1, max_pool_size1, max_pool_size1, 1],? strides=[1, max_pool_size1, max_pool_size1, 1], padding='SAME')

??? # Second Conv-relu-maxpool layer

??? conv2 = tf.nn.conv2d(max_pool1, conv2_weight, strides=[1, 1, 1, 1], padding='SAME')

??? relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias))

??? max_pool2 = tf.nn.max_pool(relu2, ksize=[1, max_pool_size1, max_pool_size1, 1],? strides=[1, max_pool_size2, max_pool_size2, 1], padding='SAME')

??? #將輸出轉換為一個[1xN],為下一個全連接層輸入做準備

??? final_conv_shape = max_pool2.get_shape().as_list()

??? final_shape = final_conv_shape[1] * final_conv_shape[2] * final_conv_shape[3]

??? flat_output = tf.reshape(max_pool2, [final_conv_shape[0], final_shape])

??? #First fully-connected layer

??? fully_connected1 = tf.nn.relu(tf.add(tf.add(tf.matmul(flat_output,full1_weight), full1_bias)))

?? ?# Second fully-connected layer

??? final_model_output = tf.add(tf.matmul(fully_connected1, full2_weight), full2_bias)

??? return (final_model_output)

8.定義網絡的訓練數據和測數據

model_output = my_conv_net(x_input)

test_model_output = my_conv_net(eval_input)

9.使用Softmax函數作為loss function

loss = loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=model_output, labels=y_target))

10.接下來創建一個訓練和測試的函數

prediction = tf.nn.softmax(model_output)

test_prediction = tf.nn.softmax(test_model_output)

# Create accuracy function

def get_accuracy(logits, targets):

? ? batch_predictions = np.argmax(logits, axis=1)

? ? num_correct = np.sum(np.equal(batch_predictions, targets))

return(100. * num_correct/batch_predictions.shape[0])

11.創建一個optimizer function

my_optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9)

train_step = my_optimizer.minimize(loss)

# Initialize Variables

init = tf.initialize_all_variables()

sess.run(init)

12.開始訓練模型

train_loss = [ ]

train_acc = [ ]

test_acc = [ ]

for i in range(generations):

? ? rand_index = np.random.choice(len(train_xdata), size=batch_size)

? ? rand_x = train_xdata[rand_index]

? ? rand_x = np.expand_dims(rand_x, 3)

? ? rand_y = train_labels[rand_index]

? ? train_dict = {x_input: rand_x, y_target: rand_y}

? ? sess.run(train_step, feed_dict=train_dict)

? ? temp_train_loss, temp_train_preds = sess.run([loss,?prediction], feed_dict=train_dict)

? ? temp_train_acc = get_accuracy(temp_train_preds, rand_y)

? ? if (i+1) % eval_every == 0:

? ? ? ? eval_index = np.random.choice(len(test_xdata),?size=evaluation_size)

? ? ? ? eval_x = test_xdata[eval_index]

? ? ? ? eval_x = np.expand_dims(eval_x, 3)

? ? ? ? eval_y = test_labels[eval_index]

? ? ? ? test_dict = {eval_input: eval_x, eval_target: eval_y}

? ? ? ? test_preds = sess.run(test_prediction, feed_dict=test_dict)

? ? ? ? temp_test_acc = get_accuracy(test_preds, eval_y)

? ? ? ? # Record and print results

? ? ? ? train_loss.append(temp_train_loss)

? ? ? ? train_acc.append(temp_train_acc)

? ? ? ? test_acc.append(temp_test_acc)

? ? ? ? acc_and_loss = [(i+1), temp_train_loss, temp_train_acc,?temp_test_acc]

? ? ? ? acc_and_loss = [np.round(x,2) for x in acc_and_loss]

13.輸出結果

print('Generation # {}. Train Loss: {:.2f}. Train Acc (Test Acc):?{:.2f} ({:.2f})'.format(*acc_and_loss))

14.使用matplotlib顯示loss-accuracies曲線

eval_indices = range(0, generations, eval_every)

# Plot loss over time

plt.plot(eval_indices, train_loss, 'k-')

plt.title('Softmax Loss per Generation')

plt.xlabel('Generation')

plt.ylabel('Softmax Loss')

plt.show()

# Plot train and test accuracy

plt.plot(eval_indices, train_acc, 'k-', label='Train Set Accuracy')

plt.plot(eval_indices, test_acc, 'r--', label='Test Set Accuracy')

plt.title('Train and Test Accuracy')

plt.xlabel('Generation')

plt.ylabel('Accuracy')

plt.legend(loc='lower right')

plt.show()

圖1. 左圖是我們500 generations時的訓練精度曲線。右圖是在500 generations時的softmax loss值

15.顯示最新一個批量的預測結果

# Plot the 6 of the last batch results:

actuals = rand_y[0:6]

predictions = np.argmax(temp_train_preds,axis=1)[0:6]

images = np.squeeze(rand_x[0:6])

Nrows = 2

Ncols = 3

for i in range(6):

? ? plt.subplot(Nrows, Ncols, i+1)

? ? plt.imshow(np.reshape(images[i], [28,28]), cmap='Greys_r')

? ? plt.title('Actual: ' + str(actuals[i]) + ' Pred: ' + str(predi

? ? ctions[i]),fontsize=10)

? ? frame = plt.gca()

? ? frame.axes.get_xaxis().set_visible(False)

? ? frame.axes.get_yaxis().set_visible(False)

圖2.?顯示出6張隨機圖片的真實結果和預測結果
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容