Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.
Note:
- You may assume the interval's end point is always bigger than its start point.
- Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.
Example 1:
Input: [ [1,2], [2,3], [3,4], [1,3] ]
Output: 1
Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.
Example 2:
Input: [ [1,2], [1,2], [1,2] ]
Output: 2
Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.
Example 3:
Input: [ [1,2], [2,3] ]
Output: 0
Explanation: You don't need to remove any of the intervals since they're already non-overlapping.
思路
思路與merge interval一致
- 通過Comparator對intervals進行排序,先按照區間的start升序,如果start相等再按照end升序排序
- 如果后一個區間與前一個區間重合,那么說明后一區間需要去掉才能保證不重合,此時count+1.
- 如果前后2個區間不重合,那么更新前一區間的起始范圍,繼續判斷。
/**
* Definition for an interval.
* public class Interval {
* int start;
* int end;
* Interval() { start = 0; end = 0; }
* Interval(int s, int e) { start = s; end = e; }
* }
*/
class Solution {
public int eraseOverlapIntervals(Interval[] intervals) {
int count = 0;
if (intervals == null || intervals.length == 0) {
return count;
}
Arrays.sort(intervals, (o1, o2) -> o1.start == o2.start? o1.start - o2.start : o1.end - o2.end);
Interval pre = intervals[0];
for (int i = 1; i < intervals.length; i++) {
if (intervals[i].start < pre.end) {
// pre.end = Math.max(pre.end, intervals[i].end);
count++;
continue;
} else {
pre = intervals[i];
}
}
return count;
}
}
Merge Intervals
思路
- (考點)用comparator自定義sort的方式
- 設置第0個元素為last interval,
- 從intervals的第1個元素開始遍歷intervals Array,每次為curInterval.
- 比較,curInterval.start >= lastInterval.last : 更新last interval的范圍,此時并不向result中加入該更新的interval,因為后面后可能還有需要merge到當前interval的元素
- 如,cur 與 last無重合:result.add(last); last = curInterval
- !!!記得把最后一個last加入到結果中
/**
* Definition of Interval:
* public class Interval {
* int start, end;
* Interval(int start, int end) {
* this.start = start;
* this.end = end;
* }
*/
public class Solution {
/*
* @param intervals: interval list.
* @return: A new interval list.
*/
public List<Interval> merge(List<Interval> intervals) {
// write your code here
// 1. !!!用comparator自定義sort的方式(考點)
// 2. 設置第0個元素為last interval,
// 3. 從intervals的第1個元素開始遍歷intervals Array,每次為curInterval
// 比較,curInterval.start >= lastInterval.last =》 更新last interval的范圍,此時并不向result中加入該更新的interval,因為后面后可能還有需要merge到當前interval的元素
// 如,cur 與 last無重合:result.add(last); last = curInterval
// 4. !!!記得把最后一個last加入到結果中
List<Interval> result = new ArrayList<Interval>();
if (intervals == null || intervals.size() < 1) {
return result;
}
//1. Sort intervals based on start
Collections.sort(intervals, new intervalComparator());
//2. merge
Interval lastInt = intervals.get(0);
for (int i = 1; i < intervals.size(); i++) {
Interval curInt = intervals.get(i);
if (curInt.start <= lastInt.end) { //last的end可能比cur的end更大,或小
lastInt.end = Math.max(lastInt.end, curInt.end);
} else {
result.add(lastInt);
lastInt = curInt;
}
}
//3. DONT forget the LAST lastInt
result.add(lastInt);
return result;
}
}
//@override Comparator interface
class intervalComparator implements Comparator<Interval> {
public int compare(Interval o1, Interval o2) {
return o1.start - o2.start;
}
}