數(shù)學(xué)之美-第四章-談?wù)劮衷~

主體講述的是中文分詞方法的演變歷史,由于一些亞洲語言詞與詞之間沒有明確的分界符,因此需要先進分詞處理。這也是中文的自然語言處理的獨到之處吧。

主要介紹在分詞過程中的奇異性是基于統(tǒng)計語言模型解決,然后再說人工分詞出現(xiàn)奇異性的解決(在擴展閱讀中)。

之后談到詞的顆粒度和層次,在中文應(yīng)用場景的不同,所需要的效果就會有所不同,由于對不同場景的應(yīng)用,構(gòu)造不同的分詞器,會產(chǎn)生資源的浪費,所以之后就有人提出了讓一個分詞器同時支持不同層次的詞的切分,然后在不同應(yīng)用中自行決定切分的顆粒度。

小結(jié)

中文分詞以統(tǒng)計語言模型為基礎(chǔ),經(jīng)過幾十年的發(fā)展和完善,今天基本上可以看作是一個已經(jīng)本解決的問題。

當然不同的人做的分詞器友好有壞,這里面的差別主要在于數(shù)據(jù)的使用和工程實現(xiàn)的精度。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 229,836評論 6 540
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 99,275評論 3 428
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 177,904評論 0 383
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,633評論 1 317
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 72,368評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,736評論 1 328
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,740評論 3 446
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,919評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 49,481評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 41,235評論 3 358
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,427評論 1 374
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,968評論 5 363
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 44,656評論 3 348
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 35,055評論 0 28
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 36,348評論 1 294
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 52,160評論 3 398
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,380評論 2 379

推薦閱讀更多精彩內(nèi)容

  • 常用概念: 自然語言處理(NLP) 數(shù)據(jù)挖掘 推薦算法 用戶畫像 知識圖譜 信息檢索 文本分類 常用技術(shù): 詞級別...
    御風之星閱讀 9,232評論 1 25
  • 轉(zhuǎn)載請注明:終小南 ? 中文分詞算法總結(jié) 什么是中文分詞眾所周知,英文是以 詞為單位的,詞和詞之間是靠空格隔開,而...
    kirai閱讀 9,871評論 3 24
  • 層次化的隱馬爾可夫模型 在自然語言處理等應(yīng)用中,由于處理序列具有遞歸特性,尤其當序列長度比較大時,HMM的復(fù)雜度將...
    我偏笑_NSNirvana閱讀 6,745評論 1 15
  • 1)ICTCLAS 最早的中文開源分詞項目之一,由中科院計算所的張華平、劉群所開發(fā),采用C/C++編寫,算法基于《...
    MobotStone閱讀 5,745評論 1 15
  • 背景 英文以空格作為分隔符,而中文詞語之間沒有分隔; 在中文里,“詞”和“詞組”邊界模糊現(xiàn)代漢語的基本表達單元雖然...
    翼徳閱讀 2,759評論 0 5