R語言基礎繪圖函數散點圖~跟著Nature Communications學畫圖~Figure1

今天繼續 跟著Nature Communications學畫圖系列第二篇。學習R語言基礎繪圖函數畫散點圖。

對應的 Nature Communications 的論文是 Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments

這篇論文數據分析和可視化的部分用到的數據和代碼全部放到了github上 https://github.com/karkman/crassphage_project

非常好的R語言學習素材。

今天學習Figure1中被紅色框線圈住的散點圖

image.png
第一部分先收一下上一篇文章的尾

https://mp.weixin.qq.com/s/dFM1bJoEGPjWhEFTaQ0Krg
跟著Nature Communications學畫圖~ Figure1 ~基礎繪圖函數箱線圖

這篇文章中有人留言說 和原圖不是很像,因為配色沒有按照論文中提供的代碼來。
下面是完全重復論文中的代碼

cols <- c("#E69F00", "#56B4E9", "#009E73")
boxplot(log10(rel_crAss)~country,data=HMP,col=cols,
        axes=F,xlab=NULL,ylab=NULL,
        horizontal = T)
axis(2,at=c(1,2,3),labels=c("China", "Europe", "US"),las=1)
title("a",adj=0,line=0)
image.png
第二部分 基礎繪圖函數散點圖
  • 讀入數據
HMP<-read.table("data/HMP.txt")
  • 最基本的散點圖
plot(rel_res~rel_crAss,data=HMP)
image.png

畫圖用plot()函數,需要指定畫圖用到的變量y和x,還有畫圖用到的數據data

原始代碼分別對 rel_res 和 rel_crAss取了log10

plot(log10(rel_res)~log10(rel_crAss),data=HMP)
image.png

取log10以后可以看到散點分布的更加均勻了。

接下來就是對圖進行美化了
  • 按照國家分組填充顏色
cols <- c("#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7")
plot(log10(rel_res)~log10(rel_crAss), data=HMP, 
     bg=cols[as.factor(HMP$country)],pch=21)
image.png
  • 更改點的大小
plot(log10(rel_res)~log10(rel_crAss), data=HMP, 
     bg=cols[as.factor(HMP$country)],pch=21,cex=2)
image.png
  • 更改x軸和y軸的標簽
plot(log10(rel_res)~log10(rel_crAss), data=HMP, bg=cols[as.factor(HMP$country)], pch=21,
     ylab = "Normalized ARG abundance (log10)", 
     xlab="Normalized crAssphage abundance (log10)", cex=2)
image.png
  • 更改坐標軸的范圍
plot(log10(rel_res)~log10(rel_crAss), data=HMP, 
     bg=cols[as.factor(HMP$country)], pch=21,
     ylab = "Normalized ARG abundance (log10)", 
     xlab="Normalized crAssphage abundance (log10)", 
     cex=2, 
     ylim=c(2.5, 4.5))
image.png

接下來將箱線圖和散點圖按照上下拼接到一起,用到的是par(fig=c(a,b,c,d)),這里需要滿足 a<b,c<d

具體可以參考鏈接
https://blog.csdn.net/qingchongxinshuru/article/details/52004182

par(fig=c(0,1,0,0.75))
plot(log10(rel_res)~log10(rel_crAss), data=HMP, 
     bg=cols[as.factor(HMP$country)], pch=21,
     ylab = "Normalized ARG abundance (log10)", 
     xlab="Normalized crAssphage abundance (log10)", 
     cex=2, 
     ylim=c(2.5, 4.5))
par(fig=c(0,1,0.5,1),new=T)
boxplot(log10(rel_crAss)~country,data=HMP,col=cols,
        axes=F,xlab=NULL,ylab=NULL,
        horizontal = T)
axis(2,at=c(1,2,3),labels=c("China", "Europe", "US"),las=1)
title("a",adj=0,line=0)
image.png

歡迎大家關注我的公眾號
小明的數據分析筆記本

?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,835評論 6 534
  • 序言:濱河連續發生了三起死亡事件,死亡現場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機,發現死者居然都...
    沈念sama閱讀 98,676評論 3 419
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事。” “怎么了?”我有些...
    開封第一講書人閱讀 176,730評論 0 380
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,118評論 1 314
  • 正文 為了忘掉前任,我火速辦了婚禮,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當我...
    茶點故事閱讀 71,873評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發上,一...
    開封第一講書人閱讀 55,266評論 1 324
  • 那天,我揣著相機與錄音,去河邊找鬼。 笑死,一個胖子當著我的面吹牛,可吹牛的內容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,330評論 3 443
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 42,482評論 0 289
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當地人在樹林里發現了一具尸體,經...
    沈念sama閱讀 49,036評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 40,846評論 3 356
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發現自己被綠了。 大學時的朋友給我發了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 43,025評論 1 371
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,575評論 5 362
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質發生泄漏。R本人自食惡果不足惜,卻給世界環境...
    茶點故事閱讀 44,279評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,684評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,953評論 1 289
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,751評論 3 394
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 48,016評論 2 375