transformer再記(解碼器)

上一篇:transformer再記(編碼器)

解碼器與編碼器在細(xì)節(jié)上有差異。

解碼器的Attention

decoder第一級自注意力的key, query, value均來自前一層decoder的輸出,但加入了Mask操作,即我們只能attend到前面已經(jīng)翻譯過的輸出的詞語,因為翻譯過程我們當(dāng)前還并不知道下一個輸出詞語,這是我們之后才會推測到的。

而decoder第二級注意力也被稱作encoder-decoder attention layer,即它的query來自于之前一級的decoder層的輸出,但其key和value來自于encoder的輸出,這使得decoder的每一個位置都可以attend到輸入序列的每一個位置。

總結(jié)一下,k和v的來源總是相同的,q在encoder及decoder自注意力層中與k,v來源相同,在encoder-decoder attention layer中與k,v來源不同。


編碼器解碼器連接:

編碼器通過處理輸入序列開啟工作。頂端編碼器的輸出之后會變轉(zhuǎn)化為一個包含向量K(鍵向量)和V(值向量)的注意力向量集 。這些向量將被每個解碼器用于自身的“編碼-解碼注意力層”,而這些層可以幫助解碼器關(guān)注輸入序列哪些位置合適。

解碼器解碼:

在完成編碼階段后,則開始解碼階段。解碼階段的每個時間步都會輸出一個輸出序列的元素(在這個例子里,是英語翻譯的句子)

接下來的每個時間步重復(fù)了這個過程,直到到達(dá)一個特殊的終止符號,它表示transformer的解碼器已經(jīng)完成了它的輸出。每個時間步的輸出在下一個時間步被提供給底端解碼器,并且就像編碼器之前做的那樣,這些解碼器會輸出它們的解碼結(jié)果 。另外,就像我們對編碼器的輸入所做的那樣,我們會將上個時間步的輸出嵌入并添加位置編碼,來表示每個單詞的位置。

而那些解碼器中的自注意力層表現(xiàn)的模式與編碼器不同:在解碼器中,自注意力層只被允許處理輸出序列中更靠前的那些位置。在softmax步驟前,它會把后面的位置給隱去(Masked)。

解碼器中的“編碼-解碼注意力層”工作方式基本就像多頭自注意力層一樣,只不過它是通過在它下面的解碼層來創(chuàng)造查詢矩陣(Q),并且從編碼器的輸出中取得鍵(V)/值矩陣(K)。



最終的線性變換和Softmax層

線性變換:

解碼器最終會輸出一個實數(shù)向量。解碼器輸出后的線性變換層是一個簡單的全連接神經(jīng)網(wǎng)絡(luò),它可以把解碼組件產(chǎn)生的向量投射到一個比它大得多的(字典維度),被稱作對數(shù)幾率(logits)的向量里。不妨假設(shè)我們的模型從訓(xùn)練集中學(xué)習(xí)一萬個不同的英語單詞(我們模型的“輸出詞表”)。因此對數(shù)幾率向量為一萬個單元格長度的向量,其中每個單元格對應(yīng)某一個單詞的分?jǐn)?shù)。

softmax層:

Softmax 層便會把那些分?jǐn)?shù)變成概率(都為正數(shù)、和為1)。概率最高的單元格被選中,并且它對應(yīng)的單詞被作為這個時間步的輸出。?

以解碼器組件產(chǎn)生的輸出向量開始,之后它會轉(zhuǎn)化出一個輸出單詞。
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖,帶你破解...
    沈念sama閱讀 228,505評論 6 533
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 98,556評論 3 418
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人,你說我怎么就攤上這事?!?“怎么了?”我有些...
    開封第一講書人閱讀 176,463評論 0 376
  • 文/不壞的土叔 我叫張陵,是天一觀的道長。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 63,009評論 1 312
  • 正文 為了忘掉前任,我火速辦了婚禮,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點故事閱讀 71,778評論 6 410
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著,像睡著了一般。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 55,218評論 1 324
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼。 笑死,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播,決...
    沈念sama閱讀 43,281評論 3 441
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 42,436評論 0 288
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 48,969評論 1 335
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 40,795評論 3 354
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 42,993評論 1 369
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情,我是刑警寧澤,帶...
    沈念sama閱讀 38,537評論 5 359
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 44,229評論 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 34,659評論 0 26
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 35,917評論 1 286
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人。 一個月前我還...
    沈念sama閱讀 51,687評論 3 392
  • 正文 我出身青樓,卻偏偏與公主長得像,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 47,990評論 2 374

推薦閱讀更多精彩內(nèi)容