array()創(chuàng)建多維數(shù)組
>>> arr = array([[1,2,3],[4,5,6],[7,8,9]])
>>> print arr
[[1 2 3]
[4 5 6]
[7 8 9]]
arange()用于創(chuàng)建等差數(shù)組**與range語法相同arange(start,end,step)
>>> arr = arange(0,10,2)
>>> print arr
[0 2 4 6 8]
數(shù)組維度
# 2×3 矩陣
>>> arr = array([arange(3),arange(3)])
>>> arr.shape
(2, 3)
# 維的個數(shù)
>>> arr.ndim
2
數(shù)據(jù)類型
NumPy支持的數(shù)據(jù)類型有整型,浮點型和復數(shù)型,同時支持不同的精度。
查看數(shù)據(jù)類型
>>> arr = array([1+2j,3+4j,5+6j]) #arr.real 實部 arr.imag 虛部
>>> arr.dtype
dtype('complex128')
#類型所占字節(jié)數(shù)
>>> arr.dtype.itemsize
16
指定數(shù)據(jù)類型
>>> arange(5,dtype=float32)
array([ 0., 1., 2., 3., 4.], dtype=float32)
創(chuàng)建自定義數(shù)據(jù)類型
>>> t = dtype([('name',str,32),('grade',int)])
>>> student = array([('weiss',90),('ruby',89)],dtype=t)
>>> print student
[('weiss', 90) ('ruby', 89)]
>>> student.shape
(2,)
轉換元素的類型
arr = arange(4)
arr.astype(float64)
array([ 0., 1., 2., 3.])
多維數(shù)組的切片
和python列表相似
# reshape() 改變數(shù)組維度 ravel()將數(shù)組展開成一維
>>> arr = arange(24).reshape(2,3,4)
>>> print arr
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
>>> arr[0,0,0]
0
>>> arr[0,:,:]
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> arr[0,...]
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> arr[::-1,...]
array([[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]],
[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]]])
>>> arr[0,::-1,-1]
array([11, 7, 3])
矩陣轉置
>>> arr = array([[1,2],[3,4]])
>>> arr.transpose()
array([[1, 3],
[2, 4]])
數(shù)組合并
#水平組合
>>> a = arange(9).reshape(3,3)
>>> b = a * 2
>>> hstack((a,b))
array([[ 0, 1, 2, 0, 2, 4],
[ 3, 4, 5, 6, 8, 10],
[ 6, 7, 8, 12, 14, 16]])
#垂直組合
>>> vstack((a,b))
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 0, 2, 4],
[ 6, 8, 10],
[12, 14, 16]])
# 也可以通過concatenate函數(shù)來進行組合
# NumPy中維度(dimensions)叫做軸(axis),軸的個數(shù)叫做秩(rank)
>>> concatenate((a,b),axis=0)
array([[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 0, 2, 4],
[ 6, 8, 10],
[12, 14, 16]])
# 深度組合
>>> dstack((a,b))
array([[[ 0, 0],
[ 1, 2],
[ 2, 4]],
[[ 3, 6],
[ 4, 8],
[ 5, 10]],
[[ 6, 12],
[ 7, 14],
[ 8, 16]]])
數(shù)組分割
>>> a = arange(9).reshape(3,3)
>>> print a
[[0 1 2]
[3 4 5]
[6 7 8]]
# 水平分割
>>> hsplit(a,3)
[array([[0],
[3],
[6]]), array([[1],
[4],
[7]]), array([[2],
[5],
[8]])]
# 垂直分割
>>> vsplit(a,3)
[array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7, 8]])]
# 通過split 指定軸進行分割
>>> split(a,3,axis=1)
[array([[0],
[3],
[6]]), array([[1],
[4],
[7]]), array([[2],
[5],
[8]])]
# 深度分割
# 必須三個維度以上的數(shù)組,
>>> a = arange(24).reshape(2,3,4)
>>> dsplit(a,2)
[array([[[ 0, 1],
[ 4, 5],
[ 8, 9]],
[[12, 13],
[16, 17],
[20, 21]]]), array([[[ 2, 3],
[ 6, 7],
[10, 11]],
[[14, 15],
[18, 19],
[22, 23]]])]
flat屬性
flat屬性將返回一個flatiter對象,可以讓我們像遍歷一維數(shù)組一樣遍歷多維數(shù)組
>>> a = arange(24).reshape(2,3,4)
>>> print a.flat[10]
10
# 獲取多個元素
>>> a.flat[[1,2,3,4]]
array([1, 2, 3, 4])
# 對flat屬性賦值將導致整個數(shù)組的元素都被覆蓋
>>> a.flat = 6
>>> print a
[[[6 6 6 6]
[6 6 6 6]
[6 6 6 6]]
[[6 6 6 6]
[6 6 6 6]
[6 6 6 6]]]
# 指定元素進行覆蓋
>>> a.flat[[2,4,6,8,10]] = 1
>>> a
array([[[6, 6, 1, 6],
[1, 6, 1, 6],
[1, 6, 1, 6]],
[[6, 6, 6, 6],
[6, 6, 6, 6],
[6, 6, 6, 6]]])
數(shù)組轉換列表
>>> arr = arange(4).reshape(2,2)
>>> arr.tolist()
[[0, 1], [2, 3]]
創(chuàng)建單位矩陣
>>> a = eye(2)
>>> a
array([[ 1., 0.],
[ 0., 1.]])
# dtype float64
>>> a.dtype
dtype('float64')