MobileNetV3是由Google在2019年3月21日提出的網(wǎng)絡(luò)架構(gòu),參考arXiv的論文,其中包括兩個子版本,即Large和Small。
源碼參考:https://github.com/SpikeKing/mobilenet_v3/blob/master/mn3_model.py
重點:
- PyTorch實現(xiàn)MobileNetV3架構(gòu);
- h-swish和h-sigmoid的設(shè)計;
- 新的MobileNet單元;
- SE結(jié)構(gòu)和Residual結(jié)構(gòu);
- Last Stage:提前Avg Pooling,和使用1x1卷積;
網(wǎng)絡(luò)結(jié)構(gòu):
整體架構(gòu)
MobileNetV3的網(wǎng)絡(luò)結(jié)構(gòu)可以分為三個部分:
- 起始部分:1個卷積層,通過3x3的卷積,提取特征;
- 中間部分:多個卷積層,不同Large和Small版本,層數(shù)和參數(shù)不同;
- 最后部分:通過兩個1x1的卷積層,代替全連接,輸出類別;
網(wǎng)絡(luò)框架如下,其中參數(shù)是Large體系:
源碼如下:
def forward(self, x):
# 起始部分
out = self.init_conv(x)
# 中間部分
out = self.block(out)
# 最后部分
out = self.out_conv1(out)
batch, channels, height, width = out.size()
out = F.avg_pool2d(out, kernel_size=[height, width])
out = self.out_conv2(out)
out = out.view(batch, -1)
return out
起始部分
起始部分,在Large和Small中均相同,也就是結(jié)構(gòu)列表中的第1個卷積層,其中包括3個部分,即卷積層、BN層、h-switch激活層。
源碼如下:
init_conv_out = _make_divisible(16 * multiplier)
self.init_conv = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=init_conv_out, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(init_conv_out),
h_swish(inplace=True),
)
h-switch 和 h-sigmoid
h-switch是非線性激活函數(shù),公式如下:
圖形如下:
源碼:
out = F.relu6(x + 3., self.inplace) / 6.
return out * x
h-sigmoid是非線性激活函數(shù),用于SE結(jié)構(gòu):
源碼:
return F.relu6(x + 3., inplace=self.inplace) / 6.
圖形如下:
卷積的計算公式
- 輸入圖片:W×W
- 卷積核:F×F
- 步長:S
- Padding的像素值:P
- 輸出圖片大小為:N×N
公式:
N = (W ? F + 2P ) / S + 1
其中,向下取整,多余的像素不參于計算。
中間部分
中間部分是多個含有卷積層的塊(MobileBlock)的網(wǎng)絡(luò)結(jié)構(gòu),參考,Large的網(wǎng)絡(luò)結(jié)構(gòu),Small類似:
其中:
- SE:Squeeze-and-Excite結(jié)構(gòu),壓縮和激發(fā);
- NL:Non-Linearity,非線性;HS:h-swish激活函數(shù),RE:ReLU激活函數(shù);
- bneck:bottleneck layers,瓶頸層;
- exp size:expansion factor,膨脹參數(shù);
每一行都是一個MobileBlock,即bneck。
源碼:
self.block = []
for in_channels, out_channels, kernal_size, stride, nonlinear, se, exp_size in layers:
in_channels = _make_divisible(in_channels * multiplier)
out_channels = _make_divisible(out_channels * multiplier)
exp_size = _make_divisible(exp_size * multiplier)
self.block.append(MobileBlock(in_channels, out_channels, kernal_size, stride, nonlinear, se, exp_size))
self.block = nn.Sequential(*self.block)
MobileBlock
三個必要步驟:
- 1x1卷積,由輸入通道,轉(zhuǎn)換為膨脹通道;
- 3x3或5x5卷積,膨脹通道,使用步長stride;
- 1x1卷積,由膨脹通道,轉(zhuǎn)換為輸出通道。
兩個可選步驟:
- SE結(jié)構(gòu):Squeeze-and-Excite;
- 連接操作,Residual殘差;步長為1,同時輸入和輸出通道相同;
其中激活函數(shù)有兩種:ReLU和h-swish。
結(jié)構(gòu)如下,參數(shù)為特定,非通用:
源碼:
def forward(self, x):
# MobileNetV2
out = self.conv(x) # 1x1卷積
out = self.depth_conv(out) # 深度卷積
# Squeeze and Excite
if self.SE:
out = self.squeeze_block(out)
# point-wise conv
out = self.point_conv(out)
# connection
if self.use_connect:
return x + out
else:
return out
子步驟如下:
第1步:1x1卷積
self.conv = nn.Sequential(
nn.Conv2d(in_channels, exp_size, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(exp_size),
activation(inplace=True)
)
第2步:膨脹的卷積操作
groups是exp值,每個通道對應(yīng)一個卷積,參考,并且不含有激活層。
self.depth_conv = nn.Sequential(
nn.Conv2d(exp_size, exp_size, kernel_size=kernal_size, stride=stride, padding=padding, groups=exp_size),
nn.BatchNorm2d(exp_size),
)
第3步:1x1卷積
self.point_conv = nn.Sequential(
nn.Conv2d(exp_size, out_channels, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(out_channels),
activation(inplace=True)
)
可選操作1:SE結(jié)構(gòu)
- 池化;
- Squeeze線性連接 + RELU + Excite線性連接 + h-sigmoid;
- resize;
- 權(quán)重與原值相乘;
源碼:
class SqueezeBlock(nn.Module):
def __init__(self, exp_size, divide=4):
super(SqueezeBlock, self).__init__()
self.dense = nn.Sequential(
nn.Linear(exp_size, exp_size // divide),
nn.ReLU(inplace=True),
nn.Linear(exp_size // divide, exp_size),
h_sigmoid()
)
def forward(self, x):
batch, channels, height, width = x.size()
out = F.avg_pool2d(x, kernel_size=[height, width]).view(batch, -1)
out = self.dense(out)
out = out.view(batch, channels, 1, 1)
return out * x
可選操作2:殘差結(jié)構(gòu)
最終的輸出與原值相加,源碼如下:
self.use_connect = (stride == 1 and in_channels == out_channels)
if self.use_connect:
return x + out
else:
return out
最后部分
最后部分(Last Stage),通過將Avg Pooling提前,減少計算量,將Squeeze操作省略,直接使用1x1的卷積,如圖:
源碼:
out = self.out_conv1(out)
batch, channels, height, width = out.size()
out = F.avg_pool2d(out, kernel_size=[height, width])
out = self.out_conv2(out)
第1個卷積層conv1,SE結(jié)構(gòu)同上,源碼:
out_conv1_in = _make_divisible(96 * multiplier)
out_conv1_out = _make_divisible(576 * multiplier)
self.out_conv1 = nn.Sequential(
nn.Conv2d(out_conv1_in, out_conv1_out, kernel_size=1, stride=1),
SqueezeBlock(out_conv1_out),
h_swish(inplace=True),
)
第2個卷積層conv2:
out_conv2_in = _make_divisible(576 * multiplier)
out_conv2_out = _make_divisible(1280 * multiplier)
self.out_conv2 = nn.Sequential(
nn.Conv2d(out_conv2_in, out_conv2_out, kernel_size=1, stride=1),
h_swish(inplace=True),
nn.Conv2d(out_conv2_out, self.num_classes, kernel_size=1, stride=1),
)
最后,調(diào)用resize方法,將Cx1x1轉(zhuǎn)換為類別,即可
out = out.view(batch, -1)
除此之外,還可以設(shè)置multiplier參數(shù),等比例的增加和減少通道的個數(shù),滿足8的倍數(shù),源碼如下:
def _make_divisible(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
至此,MobileNet V3的網(wǎng)絡(luò)結(jié)構(gòu)已經(jīng)介紹完成。