目錄
- Block底層解析
- 什么是block?
- block編譯轉換結構
- block實際結構
- block的類型
- NSConcreteGlobalBlock和NSConcreteStackBlock
- NSConcreteMallocBlock
- 捕捉變量對block結構的影響
- 局部變量
- 全局變量
- 局部靜態變量
- __block修飾的變量
- self隱式循環引用
- 不同類型block的復制
- 棧block
- 堆block
- 全局block
- block輔助函數
- __block修飾的基本類型的輔助函數
- 對象的輔助函數
- ARC中block的工作
- block試驗
- block作為參數傳遞
- block作為返回值
- block屬性
- 什么是block?
- 參考博文
Block底層解析
最近看了一些block的資料,并動手做了一些實踐,摘錄并添加了一些結論。
什么是block?
首先,看一個極簡的block:
int main(int argc, const char * argv[]) {
@autoreleasepool {
^{ };
}
return 0;
}
block編譯轉換結構
對其執行clang -rewrite-objc
編譯轉換成C++實現,得到以下代碼:
struct __block_impl {
void *isa;
int Flags;
int Reserved;
void *FuncPtr;
};
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
(void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA);
}
return 0;
}
不難看出其中的__main_block_impl_0
就是block的一個C++的實現(最后面的_0
代表是main中的第幾個block),也就是說也是一個結構體
。
其中__block_impl
的定義如下:
struct __block_impl {
void *isa;
int Flags;
int Reserved;
void *FuncPtr;
};
其結構體成員如下:
- isa,指向所屬類的指針,也就是block的類型
- flags,標志變量,在實現block的內部操作時會用到
- Reserved,保留變量
- FuncPtr,block執行時調用的函數指針
可以看出,它包含了isa指針(包含isa指針的皆為對象),也就是說block也是一個對象
(runtime里面,對象和類都是用結構體表示)。
__main_block_desc_0
的定義如下:
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0)};
其結構成員含義如下:
- reserved:保留字段
- Block_size:block大小(sizeof(struct __main_block_impl_0))
以上代碼在定義__main_block_desc_0
結構體時,同時創建了__main_block_desc_0_DATA
,并給它賦值,以供在main
函數中對__main_block_impl_0
進行初始化。
__main_block_impl_0
定義了顯式的構造函數,其函數體如下:
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
可以看出,
-
__main_block_impl_0
的isa
指針指向了_NSConcreteStackBlock
, - 從
main
函數中看,__main_block_impl_0
的FuncPtr
指向了函數__main_block_func_0
-
__main_block_impl_0
的Desc
也指向了定義__main_block_desc_0
時就創建的__main_block_desc_0_DATA
,其中紀錄了block結構體大小等信息。
以上就是根據編譯轉換的結果,對一個簡單block的解析,后面會將block操作不同類型的外部變量
,對block結構的影響進行相應的說明。
block實際結構
接下來觀察下Block_private.h
文件中對block的相關結構體的真實定義:
/* Revised new layout. */
struct Block_descriptor {
unsigned long int reserved;
unsigned long int size;
void (*copy)(void *dst, void *src);
void (*dispose)(void *);
};
struct Block_layout {
void *isa;
int flags;
int reserved;
void (*invoke)(void *, ...);
struct Block_descriptor *descriptor;
/* Imported variables. */
};
有了上文對編譯轉換的分析,這里只針對略微不同的成員進行分析:
- invoke,同上文的FuncPtr,block執行時調用的函數指針,block定義時內部的執行代碼都在這個函數中
- Block_descriptor,block的詳細描述
- copy/dispose,輔助拷貝/銷毀函數,處理block范圍外的變量時使用
總體來說,block就是一個里面存儲了指向函數體中包含定義block時的代碼塊
的函數指針,以及block外部上下文
變量等信息的結構體。
block的類型
block的常見類型有3種:
- _NSConcreteGlobalBlock(全局)
- _NSConcreteStackBlock(棧)
- _NSConcreteMallocBlock(堆)
附上APUE的進程虛擬內存段分布圖:
其中前2種在Block.h
種聲明,后1種在Block_private.h
中聲明,所以最后1種基本不會在源碼中出現。
由于無法直接創建_NSConcreteMallocBlock
類型的block,所以這里只對前面2種進行手動創建分析,最后1種通過源代碼分析。
NSConcreteGlobalBlock和NSConcreteStackBlock
首先,根據前面兩種類型,編寫以下代碼:
void (^globalBlock)() = ^{
};
int main(int argc, const char * argv[]) {
@autoreleasepool {
void (^stackBlock1)() = ^{
};
}
return 0;
}
對其進行編譯轉換后得到以下縮略代碼:
// globalBlock
struct __globalBlock_block_impl_0 {
struct __block_impl impl;
struct __globalBlock_block_desc_0* Desc;
__globalBlock_block_impl_0(void *fp, struct __globalBlock_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteGlobalBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
...
// stackBlock
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
...
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
void (*stackBlock)() = (void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA);
}
return 0;
}
可以看出globalBlock
的isa指向了_NSConcreteGlobalBlock
,即在全局區域創建,編譯時具體的代碼就已經確定在上圖中的代碼段中了,block變量存儲在全局數據存儲區;stackBlock
的isa指向了_NSConcreteStackBlock
,即在棧區創建。
NSConcreteMallocBlock
接下來是在堆中的block,堆中的block無法直接創建,其需要由_NSConcreteStackBlock
類型的block拷貝而來(也就是說block需要執行copy之后才能存放到堆中
)。由于block的拷貝最終都會調用_Block_copy_internal
函數,所以觀察這個函數就可以知道堆中block是如何被創建的了:
static void *_Block_copy_internal(const void *arg, const int flags) {
struct Block_layout *aBlock;
...
aBlock = (struct Block_layout *)arg;
...
// Its a stack block. Make a copy.
if (!isGC) {
// 申請block的堆內存
struct Block_layout *result = malloc(aBlock->descriptor->size);
if (!result) return (void *)0;
// 拷貝棧中block到剛申請的堆內存中
memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
// reset refcount
result->flags &= ~(BLOCK_REFCOUNT_MASK); // XXX not needed
result->flags |= BLOCK_NEEDS_FREE | 1;
// 改變isa指向_NSConcreteMallocBlock,即堆block類型
result->isa = _NSConcreteMallocBlock;
if (result->flags & BLOCK_HAS_COPY_DISPOSE) {
//printf("calling block copy helper %p(%p, %p)...\n", aBlock->descriptor->copy, result, aBlock);
(*aBlock->descriptor->copy)(result, aBlock); // do fixup
}
return result;
}
else {
...
}
}
從以上代碼以及注釋可以很清楚的看出,函數通過memmove
將棧中的block的內容拷貝到了堆中,并使isa指向了_NSConcreteMallocBlock
。
block主要的一些學問就出在棧中block向堆中block的轉移過程中了。
捕捉變量對block結構的影響
接下來會編譯轉換捕捉不同變量類型的block,以對比它們的區別。
局部變量
前:
- (void)test
{
int a;
^{a;};
}
后:
struct __Person__test_block_impl_0 {
struct __block_impl impl;
struct __Person__test_block_desc_0* Desc;
int a;
// a(_a)是構造函數的參數列表初始化形式,相當于a = _a。從_I_Person_test看,傳入的就是a
__Person__test_block_impl_0(void *fp, struct __Person__test_block_desc_0 *desc, int _a, int flags=0) : a(_a) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __Person__test_block_func_0(struct __Person__test_block_impl_0 *__cself) {
int a = __cself->a; // bound by copy
a;}
static struct __Person__test_block_desc_0 {
size_t reserved;
size_t Block_size;
} __Person__test_block_desc_0_DATA = { 0, sizeof(struct __Person__test_block_impl_0)};
static void _I_Person_test(Person * self, SEL _cmd) {
int a;
(void (*)())&__Person__test_block_impl_0((void *)__Person__test_block_func_0, &__Person__test_block_desc_0_DATA, a);
}
可以看到,block相對于文章開頭增加了一個int類型的成員變量,他就是用來存儲外部變量a的。可以看出,這次拷貝只是一次值傳遞
。并且當我們想在block中進行以下操作時,將會發生錯誤
^{a = 10;};
編譯器會提示
。因為_I_Person_test函數中的a和__Person__test_block_func_0函數中的a并沒有在同一個作用域,所以在block對a進行賦值是沒有意義的,所以編譯器給出了錯誤。我們可以通過地址傳遞來消除以上錯誤:
- (void)test
{
int a = 0;
// 利用指針p存儲a的地址
int *p = &a;
^{
// 通過a的地址設置a的值
*p = 10;
};
}
但是變量a的生命周期是和方法test的棧相關聯的,當test運行結束,棧隨之銷毀,那么變量a就會被銷毀,p也就成為了野指針。如果block是作為參數或者返回值,這些類型都是跨棧的,也就是說再次調用會造成野指針錯誤。
全局變量
前:
// 全局靜態
static int a;
// 全局
int b;
- (void)test
{
^{
a = 10;
b = 10;
};
}
后:
static int a;
int b;
struct __Person__test_block_impl_0 {
struct __block_impl impl;
struct __Person__test_block_desc_0* Desc;
__Person__test_block_impl_0(void *fp, struct __Person__test_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __Person__test_block_func_0(struct __Person__test_block_impl_0 *__cself) {
a = 10;
b = 10;
}
static struct __Person__test_block_desc_0 {
size_t reserved;
size_t Block_size;
} __Person__test_block_desc_0_DATA = { 0, sizeof(struct __Person__test_block_impl_0)};
static void _I_Person_test(Person * self, SEL _cmd) {
(void (*)())&__Person__test_block_impl_0((void *)__Person__test_block_func_0, &__Person__test_block_desc_0_DATA);
}
可以看出,因為全局變量都是在靜態數據存儲區
,在程序結束前不會被銷毀,所以block直接訪問了對應的變量,而沒有在__Person__test_block_impl_0結構體中給變量預留位置。
局部靜態變量
前
- (void)test
{
static int a;
^{
a = 10;
};
}
后:
struct __Person__test_block_impl_0 {
struct __block_impl impl;
struct __Person__test_block_desc_0* Desc;
int *a;
__Person__test_block_impl_0(void *fp, struct __Person__test_block_desc_0 *desc, int *_a, int flags=0) : a(_a) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __Person__test_block_func_0(struct __Person__test_block_impl_0 *__cself) {
int *a = __cself->a; // bound by copy
// 這里通過局部靜態變量a的地址來對其進行修改
(*a) = 10;
}
static struct __Person__test_block_desc_0 {
size_t reserved;
size_t Block_size;
} __Person__test_block_desc_0_DATA = { 0, sizeof(struct __Person__test_block_impl_0)};
static void _I_Person_test(Person * self, SEL _cmd) {
static int a;
// 傳入a的地址
(void (*)())&__Person__test_block_impl_0((void *)__Person__test_block_func_0, &__Person__test_block_desc_0_DATA, &a);
}
需要注意一點的是靜態局部變量是存儲在靜態數據存儲區域的,也就是和程序擁有一樣的生命周期
,也就是說在程序運行時,都能夠保證block訪問到一個有效的變量。但是其作用范圍
還是局限于定義它的函數中,所以只能在block通過靜態局部變量的地址
來進行訪問。
關于變量的存儲我原來的這篇博客有提及:c語言臆想--全局---局部變量
__block修飾的變量
前:
- (void)test
{
__block int a;
^{
a = 10;
};
}
后:
struct __Block_byref_a_0 {
void *__isa;
__Block_byref_a_0 *__forwarding;
int __flags;
int __size;
int a;
};
struct __Person__test_block_impl_0 {
struct __block_impl impl;
struct __Person__test_block_desc_0* Desc;
__Block_byref_a_0 *a; // by ref
__Person__test_block_impl_0(void *fp, struct __Person__test_block_desc_0 *desc, __Block_byref_a_0 *_a, int flags=0) : a(_a->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __Person__test_block_func_0(struct __Person__test_block_impl_0 *__cself) {
__Block_byref_a_0 *a = __cself->a; // bound by ref
// 注意,這里的_forwarding用來保證操作的始終是堆中的拷貝a,而不是棧中的a
(a->__forwarding->a) = 10;
}
static void __Person__test_block_copy_0(struct __Person__test_block_impl_0*dst, struct __Person__test_block_impl_0*src) {_Block_object_assign((void*)&dst->a, (void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);}
static void __Person__test_block_dispose_0(struct __Person__test_block_impl_0*src) {_Block_object_dispose((void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);}
static struct __Person__test_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __Person__test_block_impl_0*, struct __Person__test_block_impl_0*);
void (*dispose)(struct __Person__test_block_impl_0*);
} __Person__test_block_desc_0_DATA = { 0, sizeof(struct __Person__test_block_impl_0), __Person__test_block_copy_0, __Person__test_block_dispose_0};
static void _I_Person_test(Person * self, SEL _cmd) {
// __block將a包裝成了一個對象
__attribute__((__blocks__(byref))) __Block_byref_a_0 a = {(void*)0,(__Block_byref_a_0 *)&a, 0, sizeof(__Block_byref_a_0)};
;
(void (*)())&__Person__test_block_impl_0((void *)__Person__test_block_func_0, &__Person__test_block_desc_0_DATA, (__Block_byref_a_0 *)&a, 570425344);
}
可以看到,對比上面的結果,明顯多了__Block_byref_a_0
結構體,這個結構體中含有isa
指針,所以也是一個對象,它是用來包裝局部變量a的。當block被copy到堆中時,__Person__test_block_impl_0
的拷貝輔助函數__Person__test_block_copy_0
會將__Block_byref_a_0
拷貝至堆中,所以即使局部變量所在堆被銷毀,block依然能對堆中的局部變量進行操作。其中__Block_byref_a_0
成員指針__forwarding
用來指向它在堆中的拷貝,其依據源碼如下:
static void _Block_byref_assign_copy(void *dest, const void *arg, const int flags) {
struct Block_byref **destp = (struct Block_byref **)dest;
struct Block_byref *src = (struct Block_byref *)arg;
...
// 堆中拷貝的forwarding指向它自己
copy->forwarding = copy; // patch heap copy to point to itself (skip write-barrier)
// 棧中的forwarding指向堆中的拷貝
src->forwarding = copy; // patch stack to point to heap copy
...
}
這樣做是為了保證操作的值始終是堆中的拷貝,而不是棧中的值。(處理在局部變量所在棧還沒銷毀,就調用block來改變局部變量值的情況,如果沒有__forwarding指針,則修改無效)
至于block如何實現對局部變量的拷貝,下面會詳細說明。
self隱式循環引用
前:
@implementation Person
{
int _a;
void (^_block)();
}
- (void)test
{
void (^_block)() = ^{
_a = 10;
};
}
@end
后:
struct __Person__test_block_impl_0 {
struct __block_impl impl;
struct __Person__test_block_desc_0* Desc;
// 可以看到,block強引用了self
Person *self;
__Person__test_block_impl_0(void *fp, struct __Person__test_block_desc_0 *desc, Person *_self, int flags=0) : self(_self) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
static void __Person__test_block_func_0(struct __Person__test_block_impl_0 *__cself) {
Person *self = __cself->self; // bound by copy
(*(int *)((char *)self + OBJC_IVAR_$_Person$_a)) = 10;
}
static void __Person__test_block_copy_0(struct __Person__test_block_impl_0*dst, struct __Person__test_block_impl_0*src) {_Block_object_assign((void*)&dst->self, (void*)src->self, 3/*BLOCK_FIELD_IS_OBJECT*/);}
static void __Person__test_block_dispose_0(struct __Person__test_block_impl_0*src) {_Block_object_dispose((void*)src->self, 3/*BLOCK_FIELD_IS_OBJECT*/);}
static struct __Person__test_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __Person__test_block_impl_0*, struct __Person__test_block_impl_0*);
void (*dispose)(struct __Person__test_block_impl_0*);
} __Person__test_block_desc_0_DATA = { 0, sizeof(struct __Person__test_block_impl_0), __Person__test_block_copy_0, __Person__test_block_dispose_0};
static void _I_Person_test(Person * self, SEL _cmd) {
void (*_block)() = (void (*)())&__Person__test_block_impl_0((void *)__Person__test_block_func_0, &__Person__test_block_desc_0_DATA, self, 570425344);
}
如果在編譯轉換前,將_a
改成self.a
,能很明顯地看出是產生了循環引用(self強引用block,block強引用self)。那么使用_a
呢?經過編譯轉換后,依然可以在__Person__test_block_impl_0
看見self
的身影。且在函數_I_Person_test
中,傳入的參數也是self
。通過以下語句,可以看出,不管是用什么形式訪問實例變量,最終都會轉換成self+變量內存偏移的形式
。所以在上面例子中使用_a
也會造成循環引用。
static void __Person__test_block_func_0(struct __Person__test_block_impl_0 *__cself) {
Person *self = __cself->self; // bound by copy
// self+實例變量a的偏移值
(*(int *)((char *)self + OBJC_IVAR_$_Person$_a)) = 10;
}
不同類型block的復制
block
的復制代碼在_Block_copy_internal
函數中。
棧block
從以下代碼可以看出,棧block的復制不僅僅復制了其內容,還添加了一些額外的東西
- 1、往flags中并入了
BLOCK_NEEDS_FREE
(這個標志表明block需要釋放,在release
以及再次拷貝
時會用到) - 2、如果有輔助copy函數(
BLOCK_HAS_COPY_DISPOSE
),那么就調用(這個輔助copy函數是用來拷貝block捕獲的變量
的)
...
struct Block_layout *result = malloc(aBlock->descriptor->size);
if (!result) return (void *)0;
memmove(result, aBlock, aBlock->descriptor->size); // bitcopy first
// reset refcount
result->flags &= ~(BLOCK_REFCOUNT_MASK); // XXX not needed
result->flags |= BLOCK_NEEDS_FREE | 1;
result->isa = _NSConcreteMallocBlock;
if (result->flags & BLOCK_HAS_COPY_DISPOSE) {
//printf("calling block copy helper %p(%p, %p)...\n", aBlock->descriptor->copy, result, aBlock);
(*aBlock->descriptor->copy)(result, aBlock); // do fixup
}
return result;
...
堆block
從以下代碼看出,如果block的flags中有BLOCK_NEEDS_FREE
標志(block從棧中拷貝到堆時添加的標志),就執行latching_incr_int
操作,其功能就是讓block的引用計數加1。所以堆中block的拷貝只是單純地改變了引用計數
...
if (aBlock->flags & BLOCK_NEEDS_FREE) {
// latches on high
latching_incr_int(&aBlock->flags);
return aBlock;
}
...
全局block
從以下代碼看出,對于全局block,函數沒有做任何操作,直接返回了傳入的block
...
else if (aBlock->flags & BLOCK_IS_GLOBAL) {
return aBlock;
}
...
block輔助函數
上文提及到了block輔助copy與dispose處理函數,這里分析下這兩個函數的內部實現。在捕獲變量為__block
修飾的基本類型
,或者為對象
時,block才會有這兩個輔助函數。
block捕捉變量
拷貝函數為_Block_object_assign
。在調用復制block的函數_Block_copy_internal時,會根據block有無輔助函數來對捕捉變量
拷貝函數_Block_object_assign
進行調用。而在_Block_object_assign
函數中,也會判斷捕捉變量
包裝而成的對象(Block_byref結構體)是否有輔助函數,來進行調用。
__block
修飾的基本類型的輔助函數
編寫以下代碼:
typedef void(^Block)();
int main(int argc, const char * argv[]) {
@autoreleasepool {
__block int a;
Block block = ^ {
a;
};
}
轉換成C++代碼后:
typedef void(*Block)();
// __block int a
struct __Block_byref_a_0 {
void *__isa;
__Block_byref_a_0 *__forwarding;
int __flags;
int __size;
int a;
};
// block
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__Block_byref_a_0 *a; // by ref
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, __Block_byref_a_0 *_a, int flags=0) : a(_a->__forwarding) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
// block函數體
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
__Block_byref_a_0 *a = __cself->a; // bound by ref
(a->__forwarding->a);
}
// 輔助copy函數
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->a, (void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);}
// 輔助dispose函數
static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0), __main_block_copy_0, __main_block_dispose_0};
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
// 這里創建了,并將a的flags設置為0
__attribute__((__blocks__(byref))) __Block_byref_a_0 a = {(void*)0,(__Block_byref_a_0 *)&a, 0, sizeof(__Block_byref_a_0)};
;
Block block = (void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_a_0 *)&a, 570425344);
}
return 0;
}
從上面代碼中,被__block
修飾的a變量變為了__Block_byref_a_0
類型,根據這個格式,從源碼中查看得到相似的定義:
struct Block_byref {
void *isa;
struct Block_byref *forwarding;
int flags; /* refcount; */
int size;
void (*byref_keep)(struct Block_byref *dst, struct Block_byref *src);
void (*byref_destroy)(struct Block_byref *);
/* long shared[0]; */
};
// 做下對比
struct __Block_byref_a_0 {
void *__isa;
__Block_byref_a_0 *__forwarding;
int __flags;
int __size;
int a;
};
// flags/_flags類型
enum {
/* See function implementation for a more complete description of these fields and combinations */
// 是一個對象
BLOCK_FIELD_IS_OBJECT = 3, /* id, NSObject, __attribute__((NSObject)), block, ... */
// 是一個block
BLOCK_FIELD_IS_BLOCK = 7, /* a block variable */
// 被__block修飾的變量
BLOCK_FIELD_IS_BYREF = 8, /* the on stack structure holding the __block variable */
// 被__weak修飾的變量,只能被輔助copy函數使用
BLOCK_FIELD_IS_WEAK = 16, /* declared __weak, only used in byref copy helpers */
// block輔助函數調用(告訴內部實現不要進行retain或者copy)
BLOCK_BYREF_CALLER = 128 /* called from __block (byref) copy/dispose support routines. */
};
可以看出,__block
將原來的基本類型包裝成了對象
。因為以上兩個結構體的前4個成員的類型都是一樣的,內存空間排列一致,所以可以進行以下操作:
// 轉換成C++代碼
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->a, (void*)src->a, 8/*BLOCK_FIELD_IS_BYREF*/);}
// _Block_object_assign源碼
void _Block_object_assign(void *destAddr, const void *object, const int flags) {
...
else if ((flags & BLOCK_FIELD_IS_BYREF) == BLOCK_FIELD_IS_BYREF) {
// copying a __block reference from the stack Block to the heap
// flags will indicate if it holds a __weak reference and needs a special isa
_Block_byref_assign_copy(destAddr, object, flags);
}
...
}
// _Block_byref_assign_copy源碼
static void _Block_byref_assign_copy(void *dest, const void *arg, const int flags) {
// 這里因為前面4個成員的內存分布一樣,所以直接轉換后,使用Block_byref的成員變量名,能訪問到__Block_byref_a_0的前面4個成員
struct Block_byref **destp = (struct Block_byref **)dest;
struct Block_byref *src = (struct Block_byref *)arg;
...
else if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
// 從main函數對__Block_byref_a_0的初始化,可以看到初始化時將flags賦值為0
// 這里表示第一次拷貝,會進行復制操作,并修改原來flags的值
// static int _Byref_flag_initial_value = BLOCK_NEEDS_FREE | 2;
// 可以看出,復制后,會并入BLOCK_NEEDS_FREE,后面的2是block的初始引用計數
...
copy->flags = src->flags | _Byref_flag_initial_value;
...
}
// 已經拷貝到堆了,只增加引用計數
else if ((src->forwarding->flags & BLOCK_NEEDS_FREE) == BLOCK_NEEDS_FREE) {
latching_incr_int(&src->forwarding->flags);
}
// 普通的賦值,里面最底層就*destptr = value;這句表達式
_Block_assign(src->forwarding, (void **)destp);
}
主要操作都在代碼注釋中了,總體來說,__block
修飾的基本類型會被包裝為對象,并且只在最初block拷貝時復制一次,后面的拷貝只會增加這個捕獲變量的引用計數。
對象的輔助函數
- 沒有
__block
修飾
typedef void(^Block)();
int main(int argc, const char * argv[]) {
@autoreleasepool {
NSObject *a = [[NSObject alloc] init];
Block block = ^ {
a;
};
}
return 0;
}
首先,在沒有__block
修飾時,對象編譯轉換的結果如下,刪除了一些變化不大的代碼:
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
NSObject *a = __cself->a; // bound by copy
a;
}
static void __main_block_copy_0(struct __main_block_impl_0*dst, struct __main_block_impl_0*src) {_Block_object_assign((void*)&dst->a, (void*)src->a, 3/*BLOCK_FIELD_IS_OBJECT*/);}
static void __main_block_dispose_0(struct __main_block_impl_0*src) {_Block_object_dispose((void*)src->a, 3/*BLOCK_FIELD_IS_OBJECT*/);}
static struct __main_block_desc_0 {
size_t reserved;
size_t Block_size;
void (*copy)(struct __main_block_impl_0*, struct __main_block_impl_0*);
void (*dispose)(struct __main_block_impl_0*);
} __main_block_desc_0_DATA = { 0, sizeof(struct __main_block_impl_0),
對象在沒有__block
修飾時,并沒有產生__Block_byref_a_0
結構體,只是將標志位修改為BLOCK_FIELD_IS_OBJECT
。而在_Block_object_assign
中對應的判斷分支代碼如下:
...
else if ((flags & BLOCK_FIELD_IS_OBJECT) == BLOCK_FIELD_IS_OBJECT) {
_Block_retain_object(object);
_Block_assign((void *)object, destAddr);
}
...
可以看到,block復制時,會retain捕捉對象,以增加其引用計數。
- 有
__block
修飾
typedef void(^Block)();
int main(int argc, const char * argv[]) {
@autoreleasepool {
__block NSObject *a = [[NSObject alloc] init];
Block block = ^ {
a;
};
}
return 0;
}
在這種情況下,編譯轉換的部分結果如下:
struct __Block_byref_a_0 {
void *__isa;
__Block_byref_a_0 *__forwarding;
int __flags;
int __size;
void (*__Block_byref_id_object_copy)(void*, void*);
void (*__Block_byref_id_object_dispose)(void*);
NSObject *a;
};
int main(int argc, const char * argv[]) {
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
attribute__((__blocks__(byref))) __Block_byref_a_0 a = {(void*)0,(__Block_byref_a_0 *)&a, 33554432, sizeof(__Block_byref_a_0), __Block_byref_id_object_copy_131, __Block_byref_id_object_dispose_131,....};
Block block = (void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, (__Block_byref_a_0 *)&a, 570425344);
}
// 以下的40表示__Block_byref_a_0對象a的位移(4個指針(32字節)+2個int變量(8字節)=40字節)
static void __Block_byref_id_object_copy_131(void *dst, void *src) {
_Block_object_assign((char*)dst + 40, *(void * *) ((char*)src + 40), 131);
}
static void __Block_byref_id_object_dispose_131(void *src) {
_Block_object_dispose(*(void * *) ((char*)src + 40), 131);
}
可以看到,對于對象,__Block_byref_a_0
另外增加了兩個輔助函數__Block_byref_id_object_copy
、__Block_byref_id_object_dispose
,以實現對對象內存的管理。其中兩者的最后一個參數131
表示BLOCK_BYREF_CALLER
|BLOCK_FIELD_IS_OBJECT
,BLOCK_BYREF_CALLER表示在內部實現中不對a對象進行retain或copy;以下為相關源碼:
if ((flags & BLOCK_BYREF_CALLER) == BLOCK_BYREF_CALLER) {
...
else {
// do *not* retain or *copy* __block variables whatever they are
_Block_assign((void *)object, destAddr);
}
}
_Block_byref_assign_copy
函數的以下代碼會對上面的輔助函數(__Block_byref_id_object_copy_131)進行調用;570425344
表示BLOCK_HAS_COPY_DISPOSE
|BLOCK_HAS_DESCRIPTOR
,所以會執行以下相關源碼:
if (src->flags & BLOCK_HAS_COPY_DISPOSE) {
// Trust copy helper to copy everything of interest
// If more than one field shows up in a byref block this is wrong XXX
copy->byref_keep = src->byref_keep;
copy->byref_destroy = src->byref_destroy;
(*src->byref_keep)(copy, src);
}
ARC中block的工作
蘋果文檔提及,在ARC模式下,在棧間傳遞block時,不需要手動copy棧中的block,即可讓block正常工作。主要原因是ARC對棧中的block自動執行了copy,將
_NSConcreteStackBlock
類型的block轉換成了_NSConcreteMallocBlock
的block。block試驗
下面對block做點實驗:
int main(int argc, const char * argv[]) {
@autoreleasepool {
int i = 10;
void (^block)() = ^{i;};
__weak void (^weakBlock)() = ^{i;};
void (^stackBlock)() = ^{};
// ARC情況下
// 創建時,都會在棧中
// <__NSStackBlock__: 0x7fff5fbff730>
NSLog(@"%@", ^{i;});
// 因為block為strong類型,且捕獲了外部變量,所以賦值時,自動進行了copy
// <__NSMallocBlock__: 0x100206920>
NSLog(@"%@", block);
// 如果是weak類型的block,依然不會自動進行copy
// <__NSStackBlock__: 0x7fff5fbff728>
NSLog(@"%@", weakBlock);
// 如果block是strong類型,并且沒有捕獲外部變量,那么就會轉換成__NSGlobalBlock__
// <__NSGlobalBlock__: 0x100001110>
NSLog(@"%@", stackBlock);
// 在非ARC情況下,產生以下輸出
// <__NSStackBlock__: 0x7fff5fbff6d0>
// <__NSStackBlock__: 0x7fff5fbff730>
// <__NSStackBlock__: 0x7fff5fbff700>
// <__NSGlobalBlock__: 0x1000010d0>
}
return 0;
}
可以看出,ARC對類型為strong
且捕獲了外部變量
的block進行了copy。并且當block類型為strong
,但是創建時沒有捕獲外部變量
,block最終會變成__NSGlobalBlock__
類型(這里可能因為block中的代碼沒有捕獲外部變量,所以不需要在棧中開辟變量,也就是說,在編譯
時,這個block的所有內容已經在代碼段中生成了
,所以就把block的類型轉換為全局類型)
block作為參數傳遞
再來看下使用在棧中的block需要注意的情況:
NSMutableArray *arrayM;
void myBlock()
{
int a = 5;
Block block = ^ {
NSLog(@"%d", a);
};
[arrayM addObject:block];
NSLog(@"%@", block);
}
int main(int argc, const char * argv[]) {
@autoreleasepool {
arrayM = @[].mutableCopy;
myBlock();
Block block = [arrayM firstObject];
// 非ARC這里崩潰
block();
}
// ARC情況下輸出
// <__NSMallocBlock__: 0x100214480>
// 非ARC情況下輸出
// <__NSStackBlock__: 0x7fff5fbff738>
// 崩潰,野指針錯誤
可以看到,ARC情況下因為自動執行了copy,所以返回類型為__NSMallocBlock__
,在函數結束后依然可以訪問;而非ARC情況下,需要我們手動調用[block copy]
來將block拷貝到堆中,否則因為棧中的block生命周期和函數中的棧生命周期關聯,當函數退出后,相應的堆被銷毀,block也就不存在了。
如果把block的以下代碼刪除:
NSLog(@"%d", a);
那么block就會變成全局類型,在main中訪問也不會出崩潰。
block作為返回值
在非ARC情況下,如果返回值是block,則一般這樣操作:
return [[block copy] autorelease];
對于外部要使用的block,更趨向于把它拷貝到堆中,使其脫離棧生命周期的約束。
block屬性
這里還有一點關于block類型的ARC屬性。上文也說明了,ARC會自動幫strong類型
且捕獲外部變量
的block進行copy,所以在定義block類型的屬性時也可以使用strong,不一定使用copy。也就是以下代碼:
/** 假如有棧block賦給以下兩個屬性 **/
// 這里因為ARC,當棧block中會捕獲外部變量時,這個block會被copy進堆中
// 如果沒有捕獲外部變量,這個block會變為全局類型
// 不管怎么樣,它都脫離了棧生命周期的約束
@property (strong, nonatomic) Block *strongBlock;
// 這里都會被copy進堆中
@property (copy, nonatomic) Block *copyBlock;
參考博文
談Objective-C Block的實現
iOS中block實現的探究
A look inside blocks: Episode 3
runtime.c
Block_private.h