ndarray數(shù)組的運算

數(shù)組與標量之間的運算

數(shù)組與標量之間的運算作用于數(shù)組的每一個元素

In [62]: a=np.arange(24).reshape((2,3,4))

In [63]: a
Out[63]: 
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])

In [64]: a.mean()
Out[64]: 11.5

In [65]: a=a/a.mean()  #計算a與元素平均值的商

In [66]: a
Out[66]: 
array([[[ 0.        ,  0.08695652,  0.17391304,  0.26086957],
        [ 0.34782609,  0.43478261,  0.52173913,  0.60869565],
        [ 0.69565217,  0.7826087 ,  0.86956522,  0.95652174]],

       [[ 1.04347826,  1.13043478,  1.2173913 ,  1.30434783],
        [ 1.39130435,  1.47826087,  1.56521739,  1.65217391],
        [ 1.73913043,  1.82608696,  1.91304348,  2.        ]]])

NumPy一元函數(shù)

對ndarray中的數(shù)據(jù)執(zhí)行元素級運算的函數(shù)

函數(shù) 說明
np.abs(x) np.fabs(x) 計算數(shù)組各元素的絕對值
np.sqrt(x) 計算數(shù)組各元素的平方根
np.square(x) 計算數(shù)組各元素的平方
np.log(x) np.log10(x) np.log2(x) 計算數(shù)組各元素的自然對數(shù)、10底對數(shù)和2底對數(shù)
np.ceil(x) np.floor(x) 計算數(shù)組各元素的ceiling值或floor值
np.rint(x) 計算數(shù)組各元素的四舍五入值
np.modf(x) 將數(shù)組各元素的小數(shù)和整數(shù)部分以兩個獨立數(shù)組形式返回
np.cos(x) np.cosh(x) np.sin(x) np.sinh(x) np.tan(x) np.tanh(x) 計算數(shù)組各元素的普通型和雙曲型三角函數(shù)
np.exp(x) 計算數(shù)組各元素的指數(shù)值
np.sign(x) 計算數(shù)組各元素的符號值,1(+), 0, ‐1(‐)
In [70]: a=np.arange(24).reshape((2,3,4))

In [71]: np.square(a)
Out[71]: 
array([[[  0,   1,   4,   9],
        [ 16,  25,  36,  49],
        [ 64,  81, 100, 121]],

       [[144, 169, 196, 225],
        [256, 289, 324, 361],
        [400, 441, 484, 529]]], dtype=int32)

In [72]: a=np.sqrt(a)

In [73]: a
Out[73]: 
array([[[ 0.        ,  1.        ,  1.41421356,  1.73205081],
        [ 2.        ,  2.23606798,  2.44948974,  2.64575131],
        [ 2.82842712,  3.        ,  3.16227766,  3.31662479]],

       [[ 3.46410162,  3.60555128,  3.74165739,  3.87298335],
        [ 4.        ,  4.12310563,  4.24264069,  4.35889894],
        [ 4.47213595,  4.58257569,  4.69041576,  4.79583152]]])

In [74]: np.modf(a)
Out[74]: 
(array([[[ 0.        ,  0.        ,  0.41421356,  0.73205081],
         [ 0.        ,  0.23606798,  0.44948974,  0.64575131],
         [ 0.82842712,  0.        ,  0.16227766,  0.31662479]],
 
        [[ 0.46410162,  0.60555128,  0.74165739,  0.87298335],
         [ 0.        ,  0.12310563,  0.24264069,  0.35889894],
         [ 0.47213595,  0.58257569,  0.69041576,  0.79583152]]]),
 array([[[ 0.,  1.,  1.,  1.],
         [ 2.,  2.,  2.,  2.],
         [ 2.,  3.,  3.,  3.]],
 
        [[ 3.,  3.,  3.,  3.],
         [ 4.,  4.,  4.,  4.],
         [ 4.,  4.,  4.,  4.]]]))

NumPy二元函數(shù)

函數(shù) 說明
+ ‐ * / ** 兩個數(shù)組各元素進行對應(yīng)運算
np.maximum(x,y) np.fmax() np.minimum(x,y) np.fmin() 元素級的最大值/最小值計算
np.mod(x,y) 元素級的模運算
np.copysign(x,y) 將數(shù)組y中各元素值的符號賦值給數(shù)組x對應(yīng)元素
> < >= <= == != 算術(shù)比較,產(chǎn)生布爾型數(shù)組
In [75]: a=np.arange(24).reshape((2,3,4))

In [76]: b=np.sqrt(a)

In [77]: a
Out[77]: 
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])

In [78]: b
Out[78]: 
array([[[ 0.        ,  1.        ,  1.41421356,  1.73205081],
        [ 2.        ,  2.23606798,  2.44948974,  2.64575131],
        [ 2.82842712,  3.        ,  3.16227766,  3.31662479]],

       [[ 3.46410162,  3.60555128,  3.74165739,  3.87298335],
        [ 4.        ,  4.12310563,  4.24264069,  4.35889894],
        [ 4.47213595,  4.58257569,  4.69041576,  4.79583152]]])

In [79]: np.maximum(a,b)
Out[79]: 
array([[[  0.,   1.,   2.,   3.],
        [  4.,   5.,   6.,   7.],
        [  8.,   9.,  10.,  11.]],

       [[ 12.,  13.,  14.,  15.],
        [ 16.,  17.,  18.,  19.],
        [ 20.,  21.,  22.,  23.]]])

In [80]: a>b
Out[80]: 
array([[[False, False,  True,  True],
        [ True,  True,  True,  True],
        [ True,  True,  True,  True]],

       [[ True,  True,  True,  True],
        [ True,  True,  True,  True],
        [ True,  True,  True,  True]]], dtype=bool)
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
平臺聲明:文章內(nèi)容(如有圖片或視頻亦包括在內(nèi))由作者上傳并發(fā)布,文章內(nèi)容僅代表作者本人觀點,簡書系信息發(fā)布平臺,僅提供信息存儲服務(wù)。

推薦閱讀更多精彩內(nèi)容