pandas 將“字符類型的日期列”轉化成“時間戳索引(DatetimeIndex)”

假設目前已經引入了 pandas,同時也擁有 pandas 的 DataFrame 類型數據。

import pandas as pd

數據集如下

df.head(3)

        date    open    close   high    low     volume      code
0   2006-12-18  3.905   3.886   3.943   3.867   171180.67   600001
1   2006-12-19  3.886   3.924   3.981   3.867   276799.39   600001
2   2006-12-20  3.934   3.934   3.962   3.809   265653.85   600001

查看每一列的類型

df.info()

從結果的第四排可以看見 date 這一列類型是"object",即字符類型。

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 640 entries, 0 to 639
Data columns (total 7 columns):
date      640 non-null object
open      640 non-null float64
close     640 non-null float64
high      640 non-null float64
low       640 non-null float64
volume    640 non-null float64
code      640 non-null object
dtypes: float64(5), object(2)
memory usage: 35.1+ KB

現在的目標是:

  • 把 date 這一列用作索引
  • 把 date 用作索引時,類型需要是 DatetimeIndex。

方法1: .to_datetime 和 .set_index

首先,利用 pandas 的to_datetime 方法,把 "date" 列的字符類型數據解析成 datetime 對象。

然后,把 "date" 列用作索引。

df['date'] = pd.to_datetime(df['date'])
df.set_index("date", inplace=True)

結果:

df.head(3)
            open    close   high    low     volume      code
date                        
2006-12-18  3.905   3.886   3.943   3.867   171180.67   600001
2006-12-19  3.886   3.924   3.981   3.867   276799.39   600001
2006-12-20  3.934   3.934   3.962   3.809   265653.85   600001

查看索引是否成為 DatetimeIndex 類型,可以看見確實已經成功轉化類型。

df.axes
[DatetimeIndex(['2006-12-18', '2006-12-19', '2006-12-20', '2006-12-21',
                '2006-12-22', '2006-12-25', '2006-12-26', '2006-12-27',
                '2006-12-28', '2006-12-29',
                ...
                '2009-12-02', '2009-12-03', '2009-12-04', '2009-12-07',
                '2009-12-08', '2009-12-09', '2009-12-10', '2009-12-11',
                '2009-12-14', '2009-12-15'],
               dtype='datetime64[ns]', name='date', length=640, freq=None),
 Index(['open', 'close', 'high', 'low', 'volume', 'code'], dtype='object')]

方法2: .DatetimeIndex

首先是原始數據。

df2.head(3)

        date    open    close   high    low     volume      code
0   2003-08-01  4.997   4.949   5.016   4.949   20709.15    600002
1   2003-08-04  4.949   5.045   5.054   4.949   23923.35    600002
2   2003-08-05  5.054   5.093   5.131   5.006   35224.00    600002

先把 "date" 列用作索引,然后使用 DatetimeIndex 將字符類型轉化成 DateIndex

df2.set_index("date", inplace=True)

這個時候索引還是 object 類型,就是字符串類型。

df2.axes
[Index(['2003-08-01', '2003-08-04', '2003-08-05', '2003-08-06', '2003-08-07',
        '2003-08-08', '2003-08-11', '2003-08-12', '2003-08-13', '2003-08-14',
        ...
        '2006-03-24', '2006-03-27', '2006-03-28', '2006-03-29', '2006-03-30',
        '2006-03-31', '2006-04-03', '2006-04-04', '2006-04-05', '2006-04-06'],
       dtype='object', name='date', length=640),
 Index(['open', 'close', 'high', 'low', 'volume', 'code'], dtype='object')]

將其轉化成 DateIndex 類型。

df2.index = pd.DatetimeIndex(df.index)

再次查看結果

df2.axes

轉化成功

[DatetimeIndex(['2006-12-18', '2006-12-19', '2006-12-20', '2006-12-21',
                '2006-12-22', '2006-12-25', '2006-12-26', '2006-12-27',
                '2006-12-28', '2006-12-29',
                ...
                '2009-12-02', '2009-12-03', '2009-12-04', '2009-12-07',
                '2009-12-08', '2009-12-09', '2009-12-10', '2009-12-11',
                '2009-12-14', '2009-12-15'],
               dtype='datetime64[ns]', name='date', length=640, freq=None),
 Index(['open', 'close', 'high', 'low', 'volume', 'code'], dtype='object')]

結論:.to_datetime僅轉換格式,.DatetimeIndex還能設置為索引

兩者在轉化格式的功能上效果一樣,都可以把字符串對象轉換成 datetime 對象。

pd.DatetimeIndex 是把某一列進行轉換,同時把該列的數據設置為索引 index。
比如

df2.index = pd.DatetimeIndex(df2["date"])

得到一個以 date 作為索引的結果。

.DatetimeIndex 的問題是原來的 date 列數據仍然存在,形成了重復。

                        date           open close   high              low           volume  code
date    
2003-08-01  2003-08-01  4.997   4.949   5.016   4.949   20709.15    600002
2003-08-04  2003-08-04  4.949   5.045   5.054   4.949   23923.35    600002
2003-08-05  2003-08-05  5.054   5.093   5.131   5.006   35224.00    600002

最終還需要把 date 這一列刪掉。

del df2["date"]

才能得到正常數據


               open close   high    low volume  code
date                        
2003-08-01  4.997   4.949   5.016   4.949   20709.15    600002
2003-08-04  4.949   5.045   5.054   4.949   23923.35    600002
2003-08-05  5.054   5.093   5.131   5.006   35224.00    600002
最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容