python中實現K-Means聚類算法

原文:https://blog.csdn.net/uyy203/article/details/90735664

聚類問題是數據挖掘的基本問題,它的本質是將n 個數據對象劃分為k個聚類,以便使得所獲得的聚 類滿足以下條件:同一聚類中的數據對象相似度較 高;不同聚類中的對象相似度較小。
它的基本思想是以空間中k個點為中心,進行聚類 ,對最靠近他們的對象歸類。通過迭代的方法,逐 次更新各聚類中心的值,直至得到最好的聚類結果 次更新各聚類中心的值,直至得到最好的聚類結果 。

原始數據:


原始數據

劃分聚類數據:


在這里插入圖片描述

算法的基本步驟

第一步:從n個數據對象任意選擇k個對象作為初始聚類中心,并設定最大迭代次數;
第二步:計算每個對象與k個中心點的距離,并根據最小距離對相應對象進行劃分,即,把對象劃分到與他們最近的中心所代表的類別中去 ;
第三步:對于每一個中心點,遍歷他們所包含的對象,計算這些對象所有維度的和的均值,獲得新的中心點;
第四步:如果聚類中心與上次迭代之前相比,有所改變,或者,算法迭代次數小于給定的最大迭代次數,則繼續執行第2 、3兩步,否則,程序結束返回聚類結果。


流程圖

K-means算法運行過程

def main():
    #step1: load data
    print("load data...")
    dataSet=[]
    dataSetFile = open('./testSet/testSet.txt')
    for line in dataSetFile:
        lineAttrubute = line.strip().split('\t')
        dataSet.append([float(lineAttrubute[0]),float(lineAttrubute[1])])

    #step2: clustering
    print("clustering...")

    dataSet=np.mat(dataSet)

    k=4
    n=10000
    centers_result,clusters_assignment_result = kmeans(dataSet,k,n)

    #step3: show the clusters and centers
    print("show the clusters and centers...")

    showCluster(dataSet,k,centers_result,clusters_assignment_result)

initialCenters函數通過使用numpy庫的 ?Initialize center函數通過使用numpy庫的 zeros函數和random.uniform函數,隨機選取 了k個數據做聚類中心,并將結果存放在 了k個數據做聚類中心,并將結果存放在 Numpy的Array對象centers中

#create centers, the number of centers is k
def initialCenters(data,k):
    nameSample,dim = data.shape
    centers = np.zeros((k,dim))
    for i in range(k):
        index = int(np.random.uniform(0,nameSample))
        centers[i,:] = data[index,:]
    return centers

distanceToCenters這個函數用來計算一個數據點到所有 聚類中心的距離,將其存放在distance2Centers 中返回

#calculate distance from each point to each center
def distanceToCenters(sample, centers):
    k = centers.shape[0]
    distance2Centers = np.zeros(k)

    for i in range(k):
        distance2Centers[i] = np.sqrt(np.sum(power((sample-centers[i,:]),2)))

    return distance2Centers

這部分代碼完成了k-means算法中為數據點決定所屬類別以及迭代更新類中心點的主要功能。
請注意numpy庫的返回最小值索引的argmin函數,以及計算平均值的mean函數的使用方法。

#k-means
def kmeans(data,k,n):

    #initialize
    iterCount = 0
    centerChanged = True
    numSample = data.shape[0]
    centersAssignment = np.zeros(numSample)

    #step1 find the centers by random

    centers = initialCenters(data,k)


    while centerChanged and iterCount < n:
        #step2 calculate and mark index of the closest center from each point to create the clusters
        centerChanged = False
        iterCount = iterCount+1
        for i in range(numSample):
            sample2Centers = distanceToCenters(data[i,:],centers)
            minIndex = np.argmin(sample2Centers)
            
            if centersAssignment[i] != minIndex:
                centersAssignment[i] = minIndex
                centerChanged = True

            
        #step3 calculate the mean point in each cluster, which become new center of each cluster
        for j in range(k):
            pointsInCluster = data[np.nonzero(centersAssignment[:] == j)[0]]
            centers[j,:] = np.mean(pointsInCluster , axis = 0)

    return centers,centersAssignment

showCluster函數中,利用matplotlib庫的plot函數將不同類別數據以不同顏色展現出來

def showCluster(data,k,centers,clustersAssignment):
    
    numSample = data.shape[0]
    
    #draw all samples 
    mark = ['or','ob','og','om']
    for i in range(numSample):
        markIndex = int(clustersAssignment[i])
        plt.plot(data[i,0],data[i,1],mark[markIndex])
    

    #draw the centers
    mark = ['Dr','Db','Dg','Dm']
    for i in range(k):
        plt.plot(centers[i,0],centers[i,1],mark[i],markersize=10)

    plt.show()

完整代碼:

#k-means
#author xyz.
from numpy import *
import numpy as np
from matplotlib import *
import matplotlib.pyplot as plt

#create centers, the number of centers is k
def initialCenters(data,k):
    nameSample,dim = data.shape
    centers = np.zeros((k,dim))
    for i in range(k):
        index = int(np.random.uniform(0,nameSample))
        centers[i,:] = data[index,:]
    return centers

#calculate distance from each point to each center
def distanceToCenters(sample, centers):
    k = centers.shape[0]
    distance2Centers = np.zeros(k)

    for i in range(k):
        distance2Centers[i] = np.sqrt(np.sum(power((sample-centers[i,:]),2)))

    return distance2Centers

#k-means
def kmeans(data,k,n):

    #initialize
    iterCount = 0
    centerChanged = True
    numSample = data.shape[0]
    centersAssignment = np.zeros(numSample)

    #step1 find the centers by random

    centers = initialCenters(data,k)


    while centerChanged and iterCount < n:
        #step2 calculate and mark index of the closest center from each point to create the clusters
        centerChanged = False
        iterCount = iterCount+1
        for i in range(numSample):
            sample2Centers = distanceToCenters(data[i,:],centers)
            minIndex = np.argmin(sample2Centers)
            
            if centersAssignment[i] != minIndex:
                centersAssignment[i] = minIndex
                centerChanged = True

            
        #step3 calculate the mean point in each cluster, which become new center of each cluster
        for j in range(k):
            pointsInCluster = data[np.nonzero(centersAssignment[:] == j)[0]]
            centers[j,:] = np.mean(pointsInCluster , axis = 0)

    return centers,centersAssignment



def showCluster(data,k,centers,clustersAssignment):
    
    numSample = data.shape[0]
    
    #draw all samples 
    mark = ['or','ob','og','om']
    for i in range(numSample):
        markIndex = int(clustersAssignment[i])
        plt.plot(data[i,0],data[i,1],mark[markIndex])
    

    #draw the centers
    mark = ['Dr','Db','Dg','Dm']
    for i in range(k):
        plt.plot(centers[i,0],centers[i,1],mark[i],markersize=10)

    plt.show()



def main():
    #step1: load data
    print("load data...")
    dataSet=[]
    dataSetFile = open('./testSet/testSet.txt')
    for line in dataSetFile:
        lineAttrubute = line.strip().split('\t')
        dataSet.append([float(lineAttrubute[0]),float(lineAttrubute[1])])

    #step2: clustering
    print("clustering...")

    dataSet=np.mat(dataSet)

    k=4
    n=10000
    centers_result,clusters_assignment_result = kmeans(dataSet,k,n)

    #step3: show the clusters and centers
    print("show the clusters and centers...")

    showCluster(dataSet,k,centers_result,clusters_assignment_result)


if __name__=="__main__":
    main()
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容