項目暫時告一段落,也是一知半解,不過我的分享可以幫助我這樣菜鳥了。
先來下知識結構:
1、h264
視頻編碼處理的最后一步就是熵編碼,在H.264中采用了兩種不同的熵編碼方法:通用可變長編碼(UVLC)和基于文本的自適應二進制算術編碼(CABAC)。
2、aac
Advanced Audio Coding。一種專為聲音數據設計的文件壓縮格式,與MP3不同,它采用了全新的算法進行編碼,更加高效,具有更高的“性價比”。利用AAC格式,可使人感覺聲音質量沒有明顯降低
3、pcm
音頻采集的原始數據,硬編碼數據
4、yuv
視頻采集的原始數據,硬編碼數據
5、時間戳
直播音視頻同步的關鍵參數
6、rtmp推流
直播的推流手段
一、我們首先要做的就是采集,我們需要采集硬編碼數據yuv將其轉化成h264,然后采集pcm數據,并將其轉化成aac數據,并發送
1、視頻采集,我們要采集最后要轉化為h264編碼的格式,需要用到VideoToolbox.framework及AVFoundation.framework
VideoToolbox.framework 的主要工作是編碼,將yuv數據編碼為h264。AVFoundation.framework的任務是采集yuv原始數據。
// 獲取硬編碼數據函數,一些初始化工作就不在這里熬述了,網上有很多
-(void) captureOutput:(AVCaptureOutput*)captureOutput didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer fromConnection:(AVCaptureConnection*)connection
{
}
(1)初始化VTCompressionSession。
VTCompressionSession初始化的時候需要給出width寬,height長,編碼器類型kCMVideoCodecType_H264等。然后通過調用VTSessionSetProperty接口設置幀率等屬性,最后需要設定一個回調函數,這個回調是視頻圖像編碼成功后調用。全部準備好后,使用VTCompressionSessionCreate創建session。
// 這個函數是初始化
- (void) initEncode:(int)width height:(int)height bite:(int)iBite
{
dispatch_sync(aQueue, ^{
// For testing out the logic, lets read from a file and then send it to encoder to create h264 stream
// Create the compression session 注意h264函數
OSStatus status = VTCompressionSessionCreate(NULL, width, height, kCMVideoCodecType_H264, NULL, NULL, NULL, didCompressH264, (__bridge void *)(self), &EncodingSession);
NSLog(@"H264: VTCompressionSessionCreate %d", (int)status);
if (status != 0)
{
NSLog(@"H264: Unable to create a H264 session");
error = @"H264: Unable to create a H264 session";
return ;
}
// 碼率是清晰度
// Set the properties
VTSessionSetProperty(EncodingSession, kVTCompressionPropertyKey_RealTime, kCFBooleanTrue);
VTSessionSetProperty(EncodingSession, kVTCompressionPropertyKey_AllowFrameReordering, kCFBooleanFalse);
VTSessionSetProperty(EncodingSession, kVTCompressionPropertyKey_MaxKeyFrameInterval, (__bridge CFTypeRef _Nonnull)(@(GOP_SIZE)));
VTSessionSetProperty(EncodingSession, kVTCompressionPropertyKey_ProfileLevel, kVTProfileLevel_H264_Main_AutoLevel);
VTSessionSetProperty(EncodingSession, kVTCompressionPropertyKey_AverageBitRate, (__bridge CFTypeRef _Nonnull)@(iBite));
VTSessionSetProperty(EncodingSession, kVTCompressionPropertyKey_ExpectedFrameRate, (__bridge CFTypeRef _Nonnull)@(FRAME_RATE));
VTSessionSetProperty(EncodingSession, kVTCompressionPropertyKey_DataRateLimits, (__bridge CFTypeRef _Nonnull)@[@(iBite/8),@(1)]);
// Tell the encoder to start encoding
VTCompressionSessionPrepareToEncodeFrames(EncodingSession);
});
}
(2)提取攝像頭采集的原始圖像數據給VTCompressionSession來硬編碼。
攝像頭采集后的圖像是未編碼的CMSampleBuffer形式,利用給定的接口函數CMSampleBufferGetImageBuffer從中提取出CVPixelBufferRef,使用硬編碼接口VTCompressionSessionEncodeFrame來對該幀進行硬編碼,編碼成功后,會自動調用session初始化時設置的回調函數。
dispatch_sync(aQueue, ^{
frameCount++;
// Get the CV Image buffer 提取攝像頭采集的原始圖像數據給VTCompressionSession來硬編碼 也就是給VTCompressionSessionCreate來編碼
CVImageBufferRef imageBuffer = (CVImageBufferRef)CMSampleBufferGetImageBuffer(sampleBuffer);
// Create properties
CMTime presentationTimeStamp = CMTimeMake(frameCount, 1000);
//CMTime duration = CMTimeMake(1, DURATION);
VTEncodeInfoFlags flags;
// Pass it to the encoder
OSStatus statusCode = VTCompressionSessionEncodeFrame(EncodingSession,
imageBuffer,
presentationTimeStamp,
kCMTimeInvalid,
NULL, NULL, &flags);
// Check for error
if (statusCode != noErr) {
NSLog(@"H264: VTCompressionSessionEncodeFrame failed with %d", (int)statusCode);
error = @"H264: VTCompressionSessionEncodeFrame failed ";
// End the session
VTCompressionSessionInvalidate(EncodingSession);
CFRelease(EncodingSession);
EncodingSession = NULL;
error = NULL;
return;
}
// NSLog(@"H264: VTCompressionSessionEncodeFrame Success");
});
(3)利用回調函數,將因編碼成功的CMSampleBuffer轉換成H264碼流,通過網絡傳播。
基本上是硬解碼的一個逆過程。
void didCompressH264(void *outputCallbackRefCon, void *sourceFrameRefCon, OSStatus status, VTEncodeInfoFlags infoFlags,
CMSampleBufferRef sampleBuffer )
{
// NSLog(@"didCompressH264 called with status %d infoFlags %d", (int)status, (int)infoFlags);
NSLog(@"H264");
if (status != 0) return;
if (!CMSampleBufferDataIsReady(sampleBuffer))
{
NSLog(@"didCompressH264 data is not ready ");
return;
}
H264Encoder* encoder = (__bridge H264Encoder*)outputCallbackRefCon;
// Check if we have got a key frame first
bool keyframe = !CFDictionaryContainsKey( (CFArrayGetValueAtIndex(CMSampleBufferGetSampleAttachmentsArray(sampleBuffer, true), 0)), kCMSampleAttachmentKey_NotSync);
encoder->countFrame=encoder->countFrame+1;
// NSLog(@"dzf frameCount%d",encoder->countFrame);
if (keyframe)
{
// NSLog(@"dzf keyframe is true ");
CMFormatDescriptionRef format = CMSampleBufferGetFormatDescription(sampleBuffer);
// CFDictionaryRef extensionDict = CMFormatDescriptionGetExtensions(format);
// Get the extensions
// From the extensions get the dictionary with key "SampleDescriptionExtensionAtoms"
// From the dict, get the value for the key "avcC"
size_t sparameterSetSize, sparameterSetCount;
const uint8_t *sparameterSet;
OSStatus statusCode = CMVideoFormatDescriptionGetH264ParameterSetAtIndex(format, 0, &sparameterSet, &sparameterSetSize, &sparameterSetCount, 0 );
if (statusCode == noErr)
{
// Found sps and now check for pps
size_t pparameterSetSize, pparameterSetCount;
const uint8_t *pparameterSet;
OSStatus statusCode = CMVideoFormatDescriptionGetH264ParameterSetAtIndex(format, 1, &pparameterSet, &pparameterSetSize, &pparameterSetCount, 0 );
if (statusCode == noErr)
{
// Found pps
encoder->sps = [NSData dataWithBytes:sparameterSet length:sparameterSetSize];
encoder->pps = [NSData dataWithBytes:pparameterSet length:pparameterSetSize];
if (encoder->_delegate)
{
[encoder->_delegate gotSpsPps:encoder->sps pps:encoder->pps];
}
}
}
}
CMBlockBufferRef dataBuffer = CMSampleBufferGetDataBuffer(sampleBuffer);
size_t length, totalLength;
char *dataPointer;
OSStatus statusCodeRet = CMBlockBufferGetDataPointer(dataBuffer, 0, &length, &totalLength, &dataPointer);
if (statusCodeRet == noErr) {
// 發送數據
size_t bufferOffset = 0;
static const int AVCCHeaderLength = 4;
while (bufferOffset < totalLength - AVCCHeaderLength) {
// Read the NAL unit length
uint32_t NALUnitLength = 0;
memcpy(&NALUnitLength, dataPointer + bufferOffset, AVCCHeaderLength);
// Convert the length value from Big-endian to Little-endian
NALUnitLength = CFSwapInt32BigToHost(NALUnitLength);
NSData* data = [[NSData alloc] initWithBytes:(dataPointer + bufferOffset + AVCCHeaderLength) length:NALUnitLength];
[encoder->_delegate gotEncodedData:data isKeyFrame:keyframe];
// Move to the next NAL unit in the block buffer
bufferOffset += AVCCHeaderLength + NALUnitLength;
}
// 你小子存的數據
[encoder->_delegate oneFrameEncodeEnd:keyframe];
}
}
值得注意的是一段視頻的頭部是sps pps 組成的,我們在這個函數中要檢查頭部信息,篩選普通信息進行封裝發送推流。先發送頭部數據再發送普通視頻數據。
解析出參數集SPS和PPS,加上開始碼后組裝成NALU。提取出視頻數據,將長度碼轉換成開始碼,組長成NALU。將NALU發送出去。
發送視頻頭部信息代碼
- (void)gotSpsPps:(NSData*)sps pps:(NSData*)pps
{
// NSLog(@"gotSpsPps");
frameCount2 = [_h264Encoder getFreameCound];
const char bytes[] = "\x00\x00\x00\x01";
size_t length = (sizeof bytes) - 1; //string literals have implicit trailing '\0'
NSData *ByteHeader = [NSData dataWithBytes:bytes length:length];
mysps = sps;
mypps = pps;
[mutableData appendData:ByteHeader];
[mutableData appendData:mysps];
[mutableData appendData:ByteHeader];
[mutableData appendData:mypps];
pos = pos + sps.length + pps.length + ByteHeader.length*2;
NSMutableData *mutableDataTem1 = [[NSMutableData alloc] init];;
[mutableDataTem1 appendData:ByteHeader];
[mutableDataTem1 appendData:mysps];
long tem1 = sps.length + ByteHeader.length;
[self sendData:sizeof(Byte)*tem1 data:(char*)[mutableDataTem1 bytes]];
NSMutableData *mutableDataTem = [[NSMutableData alloc] init];;
[mutableDataTem appendData:ByteHeader];
[mutableDataTem appendData:mypps];
long tem = pps.length + ByteHeader.length;
[self sendData:sizeof(Byte)*tem data:(char*)[mutableDataTem bytes]];
}
發送實體部分代碼
- (void)oneFrameEncodeEnd:(BOOL)isKeyFrame
{
FrameData *frameData = [[FrameData alloc] init];
frameData.Iframe = isKeyFrame;
frameData.frame_len = (int) pos;
frameData.frame_seq = total_vseq;
frameData.stream_index = 0;
frameData.frame_data = (Byte *)malloc(sizeof(Byte)*pos);//new Byte[pos];
memcpy(frameData.frame_data,[mutableData bytes], pos*sizeof(Byte));
[_videoArray addObject:frameData];
total_vseq++;
//if(isKeyFrame)
//NSLog(@"add one h264 h264 h264 frame to videoArray---seq:%ld",total_vseq);
mysps = nil;
mypps = nil;
[mutableData resetBytesInRange:NSMakeRange(0, [mutableData length])];
[mutableData setLength:0];
pos = 0;
}
音頻的采集發送
將采集pcm數據進行aac編碼,網上應該有相關的代碼可以學習
-(void) captureOutput:(AVCaptureOutput*)captureOutput didOutputSampleBuffer:(CMSampleBufferRef)sampleBuffer fromConnection:(AVCaptureConnection*)connection
{
static BOOL firstStartTimer = false;
static long num = 0;
if (connection == _audioConnection) {
NSLog(@"captureOutput audio");
char szBuf[4096];
memset(szBuf, 0, sizeof(szBuf));
uint32_t nSize = sizeof(szBuf);
// AudioStreamBasicDescription inputFormat = *(CMAudioFormatDescriptionGetStreamBasicDescription(CMSampleBufferGetFormatDescription(sampleBuffer))); // 輸入音頻格式
AudioStreamBasicDescription outputFormat = *(CMAudioFormatDescriptionGetStreamBasicDescription(CMSampleBufferGetFormatDescription(sampleBuffer)));
nSize = CMSampleBufferGetTotalSampleSize(sampleBuffer);
CMBlockBufferRef databuf = CMSampleBufferGetDataBuffer(sampleBuffer);
if (CMBlockBufferCopyDataBytes(databuf, 0, nSize, szBuf) == kCMBlockBufferNoErr)
{
int32_t nOffSet = 0;
while (nOffSet < nSize)
{
int outsize = 0;
char szOutBuf[4096] = {0};
int nInSize = 0;
if (nSize - nOffSet >= 640) {
nInSize = 640;
} else {
nInSize = nSize - nOffSet;
}
outsize = [ecdoer AACEncoderEncode:lHand inData:szBuf + nOffSet inSize:nInSize outData:szOutBuf maxOutSize:4096];
// [ecdoer AACEncoderClose:outsize];
if (outsize > 0)
{
[self sendAacDataLen:outsize data:szOutBuf ptsTime:0];
}
nOffSet += 640;
}
}
}
}
音頻數據的發送
- (void)sendAacDataLen:(int) totalLength data: (char*) dataPointer ptsTime:(int64_t)pts{
int ret = WM_RTMPLIVESDK_InputData(WMRtmpLiveDataType_AAC, (const char* )dataPointer, totalLength, [self getNowTime]);
NSLog(@"~~~~~~~~~iAAc[%lld]",[self getNowTime]);
if (ret == 1) {
NSLog(@"~~~~~aac~~~~~sendData ret[%d] totalLength[%d]",ret,(int)totalLength);
}
// fail 1 success 0
}
rtmp推流網上也有很多代碼,調用rtmplib 可以自己用c++封裝一個庫用來調用。
二、最后的陳述
這里就先不解釋了大體采集發送的過程就是這樣,還有一點視頻采集發送音頻采集發送的時間獲取的是當前時間,測試的時候也可以寫間隔20ms來測試延遲的問題,它的邏輯是發送一堆音頻數據再發送一個視頻數據,因為音頻數據比較多,音頻數據如果丟幀會感覺出來明顯的卡頓,視頻則不是,視頻丟一幀人眼是很難發現的
有些詳細的理論推薦大家看這篇博客。
http://www.lxweimin.com/p/a6530fa46a88