案例8:使用計算 –使用案例1中的脫丁烷塔來研究一個普通案例-2

在這種情況下,我們模擬一個影響底部質量的斜坡干擾。這一干擾會導致底部質量瞬間超過上限。如果該計算打開,底部質量CV違反上限后,我們預計有以下行動:
?計算3將頂部質量CV的priority(優先級)設定為10;
?計算5將reflux(回流)的max move size(最大動作幅度)設定為150;
?計算6將再沸器負荷的max move size(最大動作幅度)設定為1.5;
當底部質量CV值在范圍之內時,我們預計:
?計算3將把頂部質量CV的priority(優先級)恢復到1;
?計算5將reflux(回流)的max move size(最大動作幅度)恢復到100;
?計算6將再沸器負荷的max move size(最大動作幅度)恢復到1.5。
若要查看計算結果,當控制器拒絕了仿真底部質量干擾時,我們將內核調試文件打開并保持25步。
逐步運行仿真直到第15步。如下面屏幕截圖所示,在這一點,我們可以通過單擊“bug”按鈕打開調試文件:


?我們注意到的第一點是,盡管底部質量在范圍內,EF tracking filter(EF跟蹤濾波)值依舊改為300秒。注意在原始方案中我們將EF tracking filter設定為0.0。通過確認EF tracking filter至少是5mins,計算7確認該過程不受到過于激烈的動作。
?對于內核后計算,我們注意到底部質量CV的穩態約束行為表示了值101。值101意味著由于經濟函數原因(即經濟優化將一個變量推向約束),在穩態時約束是活動的。
當底部質量違反了上限,計算將分別把回流的最大動作和再沸器負荷設置為150和1.5。


當底部質量違反了上限時,頂部質量CV的優先級將降為10。


一旦控制器拒絕了干擾,并將底部質量帶回限制內,計算將把變量恢復回標稱值。
仿真2
我們將觀察的下一個仿真稱為“Disconnected POVs”。其仿真參數如下所示。


在第6步,我們預計計算1將移去底部質量CV。在第8步,我們預計由于計算2的原因,頂部質量CV將被移去。隨后由于計算4,子控制器將切換到非活動狀態。鑒于控制器只有一個子控制器,我們預計在第8步控制器將變成standby(待機)狀態。


原文:
In this case, we simulate a ramp disturbance that affects the bottom quality. This disturbance causes the bottom quality to exceed its upper limit in the transient. If the calculations are turned ON, we expect the following when the bottom quality CV violates its upper limit
? Calculation 3 sets the priority for the top quality CV to 10
? Calculation 5 sets the max move size for reflux to 150
? Calculation 6 sets the max move size for reboiler load to 1.5
When the bottom quality CV is within limits, we expect
? Calculation 3 reverts the priority for the top quality CV back to 1
? Calculation 5 reverts the max move size for reflux back to 100
? Calculation 6 reverts the max move size for reboiler load back to 1.5
To view the results for the calculations, we turn the kernel debug file ON for 25 steps while the controller rejects the simulated bottom quality disturbance.
Run the simulation stepwise until the 15th step. At this point, we may open the debug file by clicking on the “bug” button as shown in the screenshot below
?The first aspect we notice is that even though the bottom quality is within limits, the EF tracking filter value has changed to 300 seconds. Notice in the original scenario that we left the EF tracking filter at 0.0. By ensuring that the EF tracking filter is at least 5 minutes, calculation 7 ensures that the process is not subject to overly aggressive moves.
? For the post-kernel calculations, we notice that the steady-state constraint activity for the bottom quality CV indicates a value of 101. A value of 101 implies that the constraint is active at steady state due to economics (i.e. due to the economic optimization pushing the variable against a constraint).
When the bottom quality violates its upper limit, the calculations set the max moves for the reflux and reboiler load to 150 and 1.5 respectively.
The priority for the top quality CV is lowered to 10 when the bottom quality violates its upper limit.
Once the controller rejects the disturbance and brings the bottom quality within limits, the calculations revert the variables back to their nominal values.
**Simulation 2 **
The next simulation that we observe is called “Disconnected POVs.” The simulation parameters are shown below.
At step 6, we expect calculation 1 to remove the bottom quality CV. At step 8, we expect the top quality CV to be removed as a consequence of calculation 2. Subsequently, the sub-controller is turned inactive due to calculation 4. Since the controller has just the one sub-controller, we expect the controller to shed to standby at step 8.


2016.6.16

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯系作者
平臺聲明:文章內容(如有圖片或視頻亦包括在內)由作者上傳并發布,文章內容僅代表作者本人觀點,簡書系信息發布平臺,僅提供信息存儲服務。

推薦閱讀更多精彩內容